An Investigation of the Tapered Strut On Aerodynamic Performance of the Exhaust Diffuser Under Different Swirls

Author(s):  
Yuxuan Dong ◽  
Zhigang Li ◽  
Jun Li

Abstract The exhaust diffuser with different struts was numerically calculated by solving three-dimensional Reynolds-Averaged Navier-Stokes (RANS). The flow process and flow loss mechanism in the diffuser were analyzed, the influence of two different structures of tapered struts on the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls was explored, and the aerodynamic performance of the exhaust diffuser with tapered struts was compared with a conventional exhaust diffuser with linear struts. The results show that, compared with the conventional linear strut, under different inlet pre-swirls, two different tapered struts can both weaken the flow separation in the exhaust diffuser, thereby reducing the total pressure loss. When the inlet pre-swirl is greater than 0.35, the total pressure loss coefficient of the exhaust diffuser with structure-C tapered struts decreases by up to 0.07. The two types of tapered struts also change the flow structure at the exhaust diffuser outlet, which affects the uniformity of the outlet airflow, and then affect the static pressure recovery coefficient. Under different inlet pre-swirls, two types of tapered struts can be effective to increase the static pressure recovery coefficient of the exhaust diffuser, for the exhaust diffuser with structure-C tapered struts, the static pressure recovery coefficient can be increased by up to 0.065, relative increase of 20%. The research in this paper shows that the tapered structure can significantly improve the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls.

Author(s):  
R B Anand ◽  
L Rai ◽  
S N Singh

The effect of the turning angle on the flow and performance characteristics of long S-shaped circular diffusers (length-inlet diameter ratio, L/Di = 11:4) having an area ratio of 1.9 and centre-line length of 600 mm has been established. The experiments are carried out for three S-shaped circular diffusers having angles of turn of 15°/15°, 22.5°/22.5° and 30°/30°. Velocity, static pressure and total pressure distributions at different planes along the length of the diffusers are measured using a five-hole impact probe. The turbulence intensity distribution at the same planes is also measured using a normal hot-wire probe. The static pressure recovery coefficients for 15°/15°, 22.5°/22.5° and 30°/30° diffusers are evaluated as 0.45, 0.40 and 0.35 respectively, whereas the ideal static pressure recovery coefficient is 0.72. The low performance is attributed to the generation of secondary flows due to geometrical curvature and additional losses as a result of the high surface roughness (~0.5 mm) of the diffusers. The pressure recovery coefficient of these circular test diffusers is comparatively lower than that of an S-shaped rectangular diffuser of nearly the same area ratio, even with a larger turning angle (90°/90°), i.e. 0.53. The total pressure loss coefficient for all the diffusers is nearly the same and seems to be independent of the angle of turn. The flow distribution is more uniform at the exit for the higher angle of turn diffusers.


Author(s):  
Prasanta K. Sinha ◽  
Biswajit Haldar ◽  
Amar N. Mullick ◽  
Bireswar Majumdar

Curved diffusers are an integral component of the gas turbine engines of high-speed aircraft. These facilitate effective operation of the combustor by reducing the total pressure loss. The performance characteristics of these diffusers depend on their geometry and the inlet conditions. In the present investigation the distribution of axial velocity, transverse velocity, mean velocity, static and total pressures are experimentally studied on a curved diffuser of 30° angle of turn with an area ratio of 1.27. The centreline length was chosen as three times of inlet diameter. The experimental results then were numerically validated with the help of Fluent, the commercial CFD software. The measurements of axial velocity, transverse velocity, mean velocity, static pressure and total pressure distribution were taken at Reynolds number 1.9 × 105 based on inlet diameter and mass average inlet velocity. The mean velocity and all the three components of mean velocity were measured with the help of a pre-calibrated five-hole pressure probe. The velocity distribution shows that the flow is symmetrical and uniform at the inlet and exit sections and high velocity cores are accumulated at the top concave surface due to the combined effect of velocity diffusion and centrifugal action. It also indicates the possible development of secondary motions between the concave and convex walls of the test diffuser. The mass average static pressure recovery and total pressure loss within the curved diffuser increases continuously from inlet to exit and they attained maximum values of 35% and 14% respectively. A comparison between the experimental and predicated results shows a good qualitative agreement between the two. Standard k-ε model in Fluent solver was chosen for validation. It has been observed that coefficient of pressure recovery Cpr for the computational investigation was obtained as 38% compared to the experimental investigation which was 35% and the coefficient of pressure loss is obtained as 13% in computation investigation compared to the 14% in experimental study, which indicates a very good qualitative matching.


Author(s):  
Rui Yang ◽  
Jiandao Yang ◽  
Zeying Peng ◽  
Liqun Shi ◽  
Aping He ◽  
...  

The aerodynamic performance and internal flow characteristics of the last stage and exhaust hood for steam turbines is numerically investigated using the Reynolds-Averaged Navier-Stokes (RANS) solutions based on the commercial CFD software ANSYS CFX. The full last stage including 66 stator blades and 64 rotor blades coupling with the exhaust hood is selected as the computational domain. The aerodynamic performance of last stage and static pressure recovery coefficient of exhaust hood at five different working conditions is conducted. The interaction between the last stage and exhaust hood is considered in this work. The effects of the non-uniform aerodynamic parameters along the rotor blade span on the static pressure recovery coefficient of the non-symmetric geometry of the exhaust hood are studied. The numerical results show that the efficiency of the last stage has the similar values ranges from 89.8% to 92.6% at different working conditions. In addition, the similar static pressure recovery coefficient of the exhaust hood was observed at five working conditions. The excellent aerodynamic performance of the exhaust hood was illustrated in this work.


Author(s):  
R. C. Adkins ◽  
J. O. Yost

Airflow tests have been conducted on an aerodynamic simulation of a combustor with pre-diffuser of compact configuration. The inlet Mach number throughout the tests was 0.35. The configuration was successful because of the attainment of a high pressure recovery, (Cp = 0.80), coupled with an exceptionally low total pressure loss (λ = 0.04). A useful analytical relationship is derived between the aerodynamic performance of combustor, compressor exit Mach number and diffuser performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Fei Xing ◽  
Hao Su ◽  
Shining Chan ◽  
Leilei Xu ◽  
Xinyi Yu

As a key component-connecting compressor and the entrance of combustion chamber, the diffuser is able to increase the pressure and slow down the airflow in order to promote efficient combustion as well as avoid a large amount of pressure loss. In this paper, experimental investigation and numerical studies have been carried out to understand the effects of air bleeding from dump region and dump gap ratio on the total pressure loss and static pressure recovery of the dump diffusers. The ultimate objective is optimizing the dump diffuser design to get the maximum static pressure recovery and minimum total pressure loss. A simplified test model is used to study the effect of the air bleeding from the outer dump region and the dump gap ratio on the total pressure loss and static pressure recovery in the dump diffuser. The impact of the dump gap ratio in the performance of the dump diffusers has also been discussed. Nearly all the pressure raise occurs in the prediffuser, and most of the total pressure loss occurs in the dump region. For the recirculating area in the dump region, the controllable vortex can be introduced. Bleeding air from the outer dump region can improve the velocity distribution near the flame tube. The results show that when 0.4% of the air is bled from outer dump region, the performance of the dump diffuser is optimal. Hence, the controllable vortex method is effective for improving the performance of the dump diffuser.


Author(s):  
Porika Niveditha ◽  
Bhamidi V. S. S. S. Prasad

Abstract Non-conventional diffuser designs are introduced to minimize the energy losses associated with diffusion and to enhance stable operating range of the diffusion system. This is achieved by reducing width of the diffuser by modifying a hub or shroud curves by keeping the diffuser diameter ratio constant which is often known as pinch. The comparison of modified compressor with base model is accomplished by using performance characteristics such as static pressure recovery coefficient, stagnation pressure loss coefficient, energy coefficient and isentropic efficiency. Simulations are performed at various hub pinch (5%–20%), shroud pinch (5%–20%) and combined hub and shroud pinch (5%–20%). Among all the cases shroud pinch of 10% shows best results in terms of stagnation pressure loss coefficient, static pressure recovery coefficient and energy coefficient. Further, simulations are carried out with forced rotating vaneless diffuser. It gives better results in terms of pressure rise with lower stagnation pressure losses. But there is a moderate decrement in isentropic efficiency of compressor when compared to the base model.


2011 ◽  
Vol 291-294 ◽  
pp. 349-354
Author(s):  
Guang Lin He ◽  
Xiao Lin Li

The influence of centerline and the cross-section variation to aerodynamic performance of the inlet was researched in a wider range. A new method of measuring the total pressure recovery coefficient and total pressure distortion coefficient of the inlet was proposed. Based on the loitering aircraft, a s-shaped inlet was designed to meet the needs of stable flight of loitering aircraft, whose total pressure recovery coefficient is 93.2% and total pressure distortion coefficient is 1.2%.


2019 ◽  
Author(s):  
Saeed A. El-Shahat ◽  
Hesham M. El-Batsh ◽  
Ali M. A. Attia ◽  
Guojun Li ◽  
Lei Fu

Abstract Flow separation is a major parameter affecting the compressor performance. It reduces the compressor efficiency, limits static pressure rise capability and contributes to instability in compressors. In applied research, there is a lack of understanding of the nature and mechanism of the three-dimensional (3-D) flow separation in the axial compressor especially on the juncture of the endwall and blade corner region. In the present study, the 3-D flow field in an axial compressor cascade has been studied experimentally as well as numerically. For the experimental study part, a linear compressor cascade has been installed in an open loop wind tunnel. The experimental data was acquired for a Reynolds number Rec = 2.98 × 105 based on the blade chord and the inlet flow conditions. The total pressure loss progress through the blade passage has been measured by using calibrated five and seven-hole pressure probes connected to ATX sensor module data acquisition system. The static pressure distribution on the endwall has been measured employing static pressure taps connected to digital micromanometers. To investigate the loss mechanism through the cascade, the total pressure loss coefficient has been calculated from the measured data. The computational fluid dynamics (CFD) study of the flow field was performed to gain a better understanding of the flow features. Two turbulence models, Spalart-Allmaras (S-A) and shear stress transport SST (k-ω) were used. From both parts of study, the flow field development and total pressure loss progress through the cascade have been investigated and compared. Moreover, the received data demonstrated a good agreement between the experimental and computational results. The predicted flow streamlines by numerical calculations showed regions characterized by flow separation and recirculation zones that could be used to enhance the understanding of the loss mechanism in compressor cascades. All measurements taken by 5-hole and 7-hole pressure probes have been analyzed and compared. It was found that their readings were almost the same and there are no excellences for using 7-hole probe. Furthermore S-A turbulence model calculations showed more consistencies with experimental results than SST (k-ω) model.


Author(s):  
Yuxuan Dong ◽  
Zhigang Li ◽  
Jun Li ◽  
Liming Song

The strut structure directly affects the flow field characteristics and aerodynamic performance of the gas turbine exhaust diffuser. The effects of the strut profiles and strut skewed angles on the aerodynamic performance of the exhaust diffuser at different inlet pre-swirls were numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes(RANS) and Realizable k-ε turbulence model. The numerical static pressure recovery coefficient of the exhaust diffuser is in agreement with the experimental data well. The reliability of the numerical method for the exhaust diffuser performance analysis was demonstrated. Exhaust diffusers with four kinds of vertical strut profiles obtain the highest static pressure recovery coefficient at the inlet pre-swirl of 0.35. The similar static pressure recovery coefficient of exhaust diffusers with four kinds of vertical strut airfoils are observed when the inlet pre-swirl is less than 0.48. The static pressure recovery coefficient of exhaust diffusers with vertical b1 and b2 struts are higher than that with the a1 and a2 struts when the inlet pre-swirl is greater than 0.48. At the inlet pre-swirl of 0.35, The static pressure recovery coefficient of the exhaust diffuser with the a1 strut decreases with the increasing of the strut skewed angles. The static pressure recovery coefficient of the exhaust diffuser with the b1 strut increases with the increasing of the strut skewed angles, and the static pressure recovery coefficient increases by 3.6% compared with the vertical design when the skewed angle of b1 strut is 40[Formula: see text]. At the inlet pre-swirl of 0.64. The static pressure recovery coefficient of the exhaust diffuser with the a1 strut increases by 8.7% compared with the vertical design when the skewed angle of a1 strut is greater than 20°. In addition, the static pressure recovery coefficient of the exhaust diffuser with the b1 strut decreases by 3.8% compared with the vertical design when the skewed angle of b1 strut is 40°. The method to improve the aerodynamic performance of the exhaust diffuser by appropriate increase the strut maximum thickness and design the strut skewed angle is proposed in this work.


Author(s):  
Prasanta K. Sinha ◽  
Ananta Kumar Das ◽  
Bireswar Majumdar

In the present investigation the distribution of mean velocity, static pressure and total pressure are experimentally studied on an annular curved diffuser of 30° angle of turn with an area ratio of 1.283 and centerline length was chosen as three times of inlet diameter. The experimental results then were numerically validated with the help of Fluent and then a series of parametric investigations are conducted with same centre line length and inlet diameter but with different area ratios varying from 1.15 to 3.75. The measurements were taken at Reynolds number 2.25 x 105 based on inlet diameter and mass average inlet velocity. Predicted results of coefficient of mass averaged static pressure recovery (30%) and coefficient of mass averaged total pressure loss (21%) are in good agreement with the experimental results of coefficient of mass averaged static pressure recovery (26%) and coefficient of mass averaged total pressure loss (17%) respectively. Standard k-ε model in Fluent solver was chosen for validation. From the parametric investigation it is observed that static pressure recovery increases up to an area ratio of 2.86 and between the area ration 2.86 to 3.75, pressure recovery decreases steadily. The coefficient of total pressure loss almost remains constant with the change in area ratio for similar inlet conditions.


Sign in / Sign up

Export Citation Format

Share Document