landfalling typhoon
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Lanqiang Bai ◽  
Zhiyong Meng ◽  
Ruilin Zhou ◽  
Guixing Chen ◽  
Naigeng Wu ◽  
...  
Keyword(s):  

2021 ◽  
pp. 105883
Author(s):  
Yiting Zhu ◽  
Fengxue Qiao ◽  
Yujia Liu ◽  
Xin-Zhong Liang ◽  
Qiyang Liu ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1322
Author(s):  
Lin Deng ◽  
Wenhua Gao ◽  
Yihong Duan ◽  
Chong Wu

Using the Weather Research and Forecasting model with chemistry module (WRF-Chem), Typhoon Nida (2016) was simulated to investigate the effects of anthropogenic gaseous emissions on the vortex system. Based on the Multi-resolution Emission Inventory for China (MEIC), three certain experiments were conducted: one with base-level emission intensity (CTRL), one with one-tenth the emission of SO2 (SO2_C), and one with one-tenth the emission of NH3 (NH3_C). Results show that the simulations reasonably reproduced the typhoon’s track and intensity, which were slightly sensitive to the anthropogenic gaseous emissions. When the typhoon was located over the ocean, a prolonged duration of raindrop growth and more precipitation occurred in CTRL run. The strongest updraft in CTRL is attributed to the maximum latent heating through water vapor condensation. During the landfalling period, larger (smaller) differential reflectivities in the main-core of the vortex were produced in NH3_C (SO2_C) run. Such opposite changes of raindrop size distributions may lead to stronger (weaker) rainfall intensity, and the ice-related microphysical processes and the relative humidity in low troposphere were two possible influential factors. Moreover, additional ten-member ensemble results in which white noise perturbations were added to the potential temperature field, indicated that the uncertainty of thermodynamic field in the current numerical model should not be ignored when exploring the impacts of aerosol on the microphysics and TC precipitation.


2020 ◽  
Vol 35 (5) ◽  
pp. 1967-1980
Author(s):  
Ding Chenchen ◽  
Fumin Ren ◽  
Yanan Liu ◽  
John L. McBride ◽  
Tian Feng

AbstractThe intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model. Moreover, the accumulated precipitation prediction experiments have been conducted on 21 target tropical cyclones with daily precipitation ≥ 100 mm in South China from 2012 to 2016. The best forecasting scheme for the DSAEF_LTP model is identified, and the performance of the prediction is compared with three numerical weather prediction models (the European Centre for Medium-Range Weather Forecasts, the Global Forecast System, and T639). The forecasting ability of the DSAEF_LTP model for heavy rainfall (accumulated precipitation ≥ 250 and ≥100 mm) improves when the intensity of the tropical cyclone is introduced, giving some advantages over the three numerical weather prediction models. The selection of analog tropical cyclones with a maximum intensity (during precipitation over land) equaling to or higher than the initial intensity of the target tropical cyclone gives better forecasts. The prediction accuracy for accumulated precipitation is higher for tropical cyclones with higher intensity and higher observed precipitation, with in both cases positive linear correlations with the threat score.


2020 ◽  
Vol 12 (10) ◽  
pp. 1692 ◽  
Author(s):  
Lizhen Lu ◽  
Chuyi Wu ◽  
Liping Di

The southeast coastal area of China (SCAC), a typhoon-prone area with a long coastline, suffers severe damage from typhoons almost every year. Exploring the spatial characteristics of historical typhoon-induced vegetation damage (VD) is crucial to predicting VD after severe typhoon landfalls and improving strategies for vegetation protection and restoration. Remote sensing is an efficient and feasible approach for measuring large-scale VD caused by natural disasters. This paper, by exploring the spatial distribution of VD of every severe landfalling typhoon with Google Earth Engine (GEE), aims to reveal the spatial characteristics of typhoon-induced VD in SCAC. Firstly, the values of disaster vegetation damage index (DVDI), difference in enhanced vegetation index (DEVI), and normalized difference vegetation index (DNDVI) for the 28 selected landing typhoons in SCAC were calculated and compared by using moderate resolution imaging spectroradiometer (MODIS) data in GEE. Secondly, every DVDI image was overlaid with land cover, elevation, relative aspect and typhoon path layers in ArcGIS. Thirdly, spatial characteristics of VD were revealed with the aid of spatial statistical analysis. The study found that: (1) DVDI is a more effective index for evaluating VD caused by typhoons. (2) The Pearl River Delta is the most severe VD region. The severe VD regions for four typhoon groups have significantly spatial correlation with typhoon-landing locations. (3) Forests are ranked the first in terms of damaged areas by typhoon in every year, followed by sparse forests. (4) Topography has no influence on VD by a single typhoon event, and relative aspect has no correlation with VD caused by typhoons in SCAC.


2019 ◽  
Vol 147 (12) ◽  
pp. 4589-4609
Author(s):  
Yu-Cheng Kao ◽  
Ben Jong-Dao Jou ◽  
Johnny C. L. Chan ◽  
Wen-Chau Lee

Abstract In this study, the structure and evolution of a coastal barrier jet (CBJ) along the east coast of Taiwan is documented using operational Doppler radars. The formation of the CBJ was controlled by the flow regime associated with the approaching Typhoon Haitang (2005). The CBJ persisted for 6 h and was approximately 140 km long and 25 km wide. The northern branch of the CBJ had stronger winds with maximum wind speed 49–52 m s−1, a greater vertical extent with jet core between 1.0 and 2.5 km in height, and a more persistent jet signal than the southern branch with maximum wind speed 43–46 m s−1 and jet core between 1.0 and 2.0 km. We investigated the terrain blocking effect leading to the CBJ formation using an idealized simulation. A vortex resembling Haitang is constructed based on circulation retrieved from generalized velocity track display (GVTD) technique. The result of a no-terrain simulation reveals wind speed 10–22 m s−1 lower than the observed Doppler velocity. The difference suggests the enhanced wind speed along the coast was most likely due to the terrain blocking effect.


Sign in / Sign up

Export Citation Format

Share Document