scholarly journals The main generation stage of organic acids during source-rock maturation: Implications for reservoir alteration in deep strata

Author(s):  
Jian Chen ◽  
Jie Xu ◽  
Qiang Wang ◽  
Susu Wang ◽  
Zhenyu Sun ◽  
...  
2020 ◽  
Author(s):  
Jian Chen ◽  
Jie Xu ◽  
Zhenyu Sun ◽  
Susu Wang ◽  
Wanglu Jia ◽  
...  

<p><strong>Introduction: </strong>Organic acids which are commonly detected in oilfield waters, can partially enhance reservoir properties. Previous studies have suggested that cleavage of the oxygen-containing functional group in kerogen is a major source of organic acids. However, this cleavage is assumed to occur before the source rock enters the oil window. If this is correct, then these acids can dissolve only minerals in the source rocks. Presently, no detailed study of the generation of organic acids during the whole thermal maturation of source rocks has been conducted. It is unclear whether organic acids could migrate into reservoirs.</p><p><strong>Aim: </strong>This research simulated the thermal evolution of source rocks in order to build a coupled model of organic acid and hydrocarbon generation, and investigate if organic acids generated in source rocks can migrate into reservoirs.</p><p><strong>Methods: </strong>Three immature source rocks containing type I, II, and III kerogens were crushed to 200 mesh. These powders, along with deionized water, were sealed in Au tubes and heated to 220–360°C for 72 h (EasyRo 0.37-1.16%). All the run products, including organic acids, gas, and bitumen, were analyzed.</p><p><strong>Results: </strong>At all temperatures, the organic acids dissolved in the waters are composed of formate, acetate, propionate, and oxalate. Acetate is the major compound with a modal proportion of >83%. The maximum yield of total organic acids was from source rocks containing type I kerogen (31.0 mg/g TOC), which was twice that from source rocks containing type II and III kerogens (13.3–15.4 mg/g TOC). However, for the type I and II kerogen-bearing source rocks, the organic acids reached a maximum yield (EasyRo = 1.16%) following the bitumen generation peak (EasyRo = 0.95%). Organic acids from type III kerogen-bearing source rocks reached their maximum yield (EasyRo = 0.95%) before the source rock entered the gas window (EasyRo > 1.16%).</p><p><strong>Conclusions: </strong>Our data suggest that the generation of organic acids is coupled with the generation of oil from type I and II kerogen-bearing source rocks, but form earlier than gas from type III kerogen-bearing source rocks. As such, some organic acids dissolved in pore waters are possibly expelled from source rocks containing type I and II kerogen with oils, which can then migrate into reservoirs. Migration of organic acids into reservoirs from source rocks containing type III kerogen is also possible in some situations. For example, when a source rock is rapidly buried for a short period, such as in the Kuqa Depression, Tarim Basin, China, the generation interval of organic acids and gas is short. Both could be expelled outside and migrate upwards into reservoirs. In conclusion, organic acids derived from source rocks can contribute to reservoir alteration.</p>


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840007 ◽  
Author(s):  
WEIMING WANG ◽  
ZHIXUAN WANG ◽  
XUAN CHEN ◽  
FEI LONG ◽  
SHUANGFANG LU ◽  
...  

In this paper, in a case study of Santanghu Basin in China, the morphological characteristics and size distribution of nanoscale pores in the volcanic rocks of the Haerjiawu Formation were investigated using the results of low temperature nitrogen adsorption experiments. This research showed that within the target layer, a large number of nanoscale, eroded pores showed an “ink bottle” morphology with narrow pore mouths and wide bodies. The fractal dimension of pores increases gradually with increasing depth. Moreover, as fractal dimension increases, BET-specific surface area gradually increases, average pore diameter decreases and total pore volume gradually increases. The deeper burial of the Haerjiawu volcanic rocks in the Santanghu Basin leads to more intense erosion by organic acids derived from the basin’s source rocks. Furthermore, the internal surface roughness of these corrosion pores results in poor connectivity. As stated above, the corrosion process is directly related to the organic acids generated by the source rock of the interbedded volcanic rocks. The deeper the reservoir, the more the organic acids being released from the source rock. However, due to the fact that the Haerjiawu volcanic rocks are tight reservoirs and have complicated pore-throat systems, while organic acids dissolve unstable minerals such as feldspars which improve the effective reservoir space; the dissolution of feldspars results in the formation of new minerals, which cannot be expelled from the tight reservoirs. They are instead precipitated in the fine pore throats, thereby reducing pore connectivity, while enhancing reservoir micro-preservation conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenzhu Zhou ◽  
Xiaolan Chen ◽  
Haiyang Xia

Sichuan Basin is the only successful basin for shale gas exploration in China. In addition to the main shale in the Lower Silurian Longmaxi formation, the lower Cambrian Qiongzhusi shale is an important potential formation. However, it was once considered that shale gas is difficult to enrich because of its poor sealing conditions and hydrocarbon migration to adjacent reservoirs. With the increasing research on hydrocarbon generation and reservoir in shale of Qiongzhusi Formation in recent years, it has become an important exploration target in Sichuan Basin. The enrichment of oil and gas is closely related to fluid activities. Limited by the degree of exploration, there is little analysis of fluid activities in Qiongzhusi Formation, and there is little analysis of shale gas enrichment potential from the perspective of fluid. The hydrocarbon generated from Qiongzhusi shale in the rift could migrate laterally to the uplift area and form a reservoir in Dengying Formation. The fluid activities from source rock to reservoir are basically the same. Therefore, this paper reconstructed the history of hydrocarbon activities in Dengying reservoirs based on fluid inclusion analysis. Then the fluid activity process in Qiongzhusi shale was studied, and its enrichment conditions of shale gas was discussed. The results show that the hydrocarbon activities of Dengying Formation can be divided into three stages: 1) oil charging stage, 2) oil cracking gas generation stage and 3) gas reservoir adjustment stage. The first stage is under normal pressure, and the second and third stages developed overpressure with pressure coefficients of 1.3 and 1.2, respectively. High pressure coefficient is an important indicator of shale gas enrichment. Because the source rock of Qiongzhusi Formation has always been the main source rock of Dengying Formation, it can supply hydrocarbon to Dengying Formation only with overpressure in gas generation stage. Therefore, overpressure in the last two stages of gas generation indeed existed. As long as the sealing condition of shale itself is not particularly poor, shale gas “sweet points” would be formed. Therefore, the thick shale in Deyang-Anyue rift is the focus of shale gas exploration in Qiongzhusi Formation.


2011 ◽  
Vol 3 (5) ◽  
pp. 45-47
Author(s):  
P. G. Umbarkar P. G. Umbarkar ◽  
◽  
Swati. N Zodpe
Keyword(s):  

2018 ◽  
Vol 17 (5) ◽  
pp. 47-59
Author(s):  
Hacer Coklar ◽  
Mehmet Akbulut ◽  
Iliasu Alhassan ◽  
Şeyma Kirpitci ◽  
Emine Korkmaz

Sign in / Sign up

Export Citation Format

Share Document