scholarly journals Scalable mapping of myelin and neuron density in the human brain with micrometer resolution

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuaibin Chang ◽  
Divya Varadarajan ◽  
Jiarui Yang ◽  
Ichun Anderson Chen ◽  
Sreekanth Kura ◽  
...  

AbstractOptical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.

2021 ◽  
Author(s):  
Hui Wang ◽  
Shuaibin Chang ◽  
Divya Varadarajan ◽  
Jiarui Yang ◽  
Ichun Anderson Chen ◽  
...  

Optical Coherence Tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. To date, histology remains the golden standard, which is prone to errors and can only work on a small number of subjects. Here, we demonstrate a novel method that uses serial sectioning OCT to quantitatively measure myelin content and neuron density in the human brain. We found that the scattering coefficient possesses a strong linear relationship with the myelin content across different regions of the human brain, while the neuron density serves as a secondary contribution that only slightly modulates the overall tissue scattering.


2016 ◽  
Vol 12 (2) ◽  
pp. 4255-4259
Author(s):  
Michael A Persinger ◽  
David A Vares ◽  
Paula L Corradini

                The human brain was assumed to be an elliptical electric dipole. Repeated quantitative electroencephalographic measurements over several weeks were completed for a single subject who sat in either a magnetic eastward or magnetic southward direction. The predicted potential difference equivalence for the torque while facing perpendicular (west-to-east) to the northward component of the geomagnetic field (relative to facing south) was 4 μV. The actual measurement was 10 μV. The oscillation frequency around the central equilibrium based upon the summed units of neuronal processes within the cerebral cortices for the moment of inertia was 1 to 2 ms which are the boundaries for the action potential of axons and the latencies for diffusion of neurotransmitters. The calculated additional energy available to each neuron within the human cerebrum during the torque condition was ~10-20 J which is the same order of magnitude as the energy associated with action potentials, resting membrane potentials, and ligand-receptor binding. It is also the basic energy at the level of the neuronal cell membrane that originates from gravitational forces upon a single cell and the local expression of the uniaxial magnetic anisotropic constant for ferritin which occurs in the brain. These results indicate that the more complex electrophysiological functions that are strongly correlated with cognitive and related human properties can be described by basic physics and may respond to specific geomagnetic spatial orientation.


2007 ◽  
Vol 48 (1) ◽  
pp. 303 ◽  
Author(s):  
M. Joseph Costello ◽  
So¨nke Johnsen ◽  
Kurt O. Gilliland ◽  
Christopher D. Freel ◽  
W. Craig Fowler

1990 ◽  
Vol 259 (4) ◽  
pp. H997-H1005 ◽  
Author(s):  
G. R. Seabrook ◽  
L. A. Fieber ◽  
D. J. Adams

The intrinsic cardiac ganglia of the neonatal rat heart in situ were studied using electrophysiological and histochemical techniques. The vagal branches innervating the atrial myocardium and cardiac ganglia were identified and individual ganglion cells visualized using Hoffman modulation contrast optics. Histochemical studies revealed the presence of acetylcholinesterase activity associated with neuronal cell bodies and fibers, catecholamine-containing, small intensely fluorescent cells, and cell bodies and nerve fibers immunoreactive for vasoactive intestinal polypeptide. Intracellular recordings from the "principal" cells of the rat cardiac ganglion in situ revealed a fast excitatory postsynaptic potential (EPSP) evoked after electrical stimulation of the vagus nerve, which was inhibited by the nicotinic receptor antagonist, mecamylamine. No spontaneously firing neurons were found, although infrequent (less than 2 min-1) spontaneous miniature EPSPs were observed in most neurons. The quantal content of neurally evoked responses was between 10 and 30 quanta, and the presence of multiple EPSPs in some cells suggested polyneuronal innervation. The neurally evoked EPSP amplitude was dependent on the rate of nerve stimulation, decreasing with increasing frequency of stimulation. Neurons exhibited a sustained depolarization during high frequency stimulation (greater than 1 Hz), and in approximately 15% of the cells a slow depolarization lasting 1-3 min was observed after a train of stimuli. The presence of catecholamine- and neuropeptide-containing neuronal cell body fibers in neonatal rat cardiac ganglia in situ, along with neurally evoked postsynaptic responses resistant to cholinergic ganglionic blockers, suggests a role for noncholinergic transmission in the regulation of the mammalian heart beat.


2012 ◽  
Vol 591-593 ◽  
pp. 1800-1804
Author(s):  
Lu Zhang ◽  
Zong Yao Li ◽  
Hong Zhao ◽  
Wei Chen ◽  
Li Yuan ◽  
...  

Cell health situation relates to its inter structures closely. Cell scattering measurement can be a non-invasive measurement method to obtain cells structure information. But normal scattering detection by original scattering spectrum can not identify cells inner structure changing, such as nucleus radii difference. Traditional scattering spectrum analysis method for identifying cells is to plot the forward scattering (FS) light intensity against side scattering (SS) light intensity. Overlapping phenomenon always occurs which leads to serious error or even mistakes in cells identification results. The Novel even scattering angle superposition algorithm and even incident angle superposition algorithm are put forward herein. In this way, the same kind of cells with different inner structures can be effectively distinguished. The rapid, convenient and label-free cells assorting and detecting can be therefore well accomplished, and these novel methods could be a kind of important diagnostic tool in cancer or other malignant cells diagnosis.


1998 ◽  
Vol 2 (4) ◽  
pp. 352-356 ◽  
Author(s):  
Kosuke Noda ◽  
Keita Jimbo ◽  
Kazuo Suzuki ◽  
Kentaro Yoda

2020 ◽  
Vol 14 ◽  
Author(s):  
Hung Tri Tran ◽  
Esther H. R. Tsai ◽  
Amanda J. Lewis ◽  
Tim Moors ◽  
J. G. J. M. Bol ◽  
...  

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson’s diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.


Sign in / Sign up

Export Citation Format

Share Document