deer ked
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2794
Author(s):  
Annalisa Andreani ◽  
Laura Stancampiano ◽  
Antonio Belcari ◽  
Patrizia Sacchetti ◽  
Riccardo Bozzi ◽  
...  

Lipoptena fortisetosa and L. cervi are hematophagous ectoparasites belonging to the Hippoboscidae family and preferentially living on cervids. In recent years, they have received specific attention due to the great increase in the abundance of their host species, and to their medical and veterinary importance as possible vectors of pathogens harmful to humans and animals. The aim of this study was to investigate the parasitism level of both of these flies on their main hosts in Italy, which are red deer, fallow deer, and roe deer, and to highlight a possible preference for a species, sex, or age class among the hosts. Deer keds were collected by examining 326 cervids hunted in the Tuscan-Emilian Apennines. Outcomes showed that L. fortisetosa has greatly spread throughout the study area, where it competes with the autochthonous L. cervi. Moreover, red deer was the favored host species of both ectoparasites, while different preferences for host sex and age classes were observed in the two hippoboscids. The regular monitoring of deer ked populations, especially the allochthonous L. fortisetosa, which is continuously spreading in Europe, is recommended to expand the knowledge on these parasitic species that are potentially dangerous to public health.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 845
Author(s):  
Annalisa Andreani ◽  
Marzia Cristiana Rosi ◽  
Roberto Guidi ◽  
David Jafrancesco ◽  
Alessandro Farini ◽  
...  

Lipoptena fortisetosa, a deer ked native to Japan, has established itself in several European countries and was recently recorded in Italy. This hippoboscid ectoparasite can develop high density populations, causing annoyance to animals and concern regarding the potential risk of transmitting pathogens to humans. No monitoring or control methods for L. fortisetosa have been applied or tested up to now. This research evaluated the possible response of L. fortisetosa winged adults to different colours as the basis for a monitoring and control strategy. In the summer of 2020, a series of six differently coloured sticky panels were randomly set as traps in a wooded area used by deer for resting. The results indicated a clear preference of the deer ked for the blue panels that caught the highest number of flies during the experimental period. Lower numbers of flies were trapped on the red, green, black, and white panels, with the yellow panels recording the fewest captures. The response clearly demonstrates that this species displays a colour preference, and that coloured traps might be useful for monitoring and limiting this biting ectoparasite in natural areas harbouring wildlife and visited by people.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shingo Sato ◽  
Hidenori Kabeya ◽  
Sayuri Ishiguro ◽  
Yasuhiro Shibasaki ◽  
Soichi Maruyama

Abstract Background Two species of deer ked (Lipoptena cervi and L. mazamae) have been identified as vectors of Bartonella bacteria in cervids in Europe and the USA. In an earlier study we showed that Japanese sika deer (Cervus nippon) harbor three Bartonella species, namely B. capreoli (lineage A) and two novel Bartonella species (lineages B and C); however, there is currently no information on the vector of Bartonella bacteria in sika deer. The aim of this study was to clarify potential vectors of Bartonella in Japanese sika deer. Methods Thirty-eight wingless deer keds (L. fortisetosa) and 36 ticks (Haemaphysalis and Ixodes species) were collected from sika deer. The prevalence of Bartonella in the arthropods was evaluated by real-time PCR targeting the 16S−23S internal transcribed spacer (ITS) and by culture of the organisms. The total number of Bartonella bacteria were quantified using real-time PCR. The distribution of Bartonella bacteria in deer ked organs was examined by immunofluorescence analysis. The relationship of Bartonella strains isolated from sika deer and arthropods were examined by a phylogenetic analysis based on concatenated sequences of the gltA, rpoB, ftsZ, and ribC genes, followed by a BLAST search for gltA and rpoB. Results Bartonella prevalence in deer keds was 87.9% by real-time PCR and 51.5% in culture and that in the ticks was 8.3% by real-time PCR and 2.8% in culture. The mean number of Bartonella bacteria per ked was calculated to be 9.2 × 105 cells. Bartonella aggregates were localized in the midgut of the keds. The phylogenetic analysis and BLAST search showed that both the host deer and the keds harbored two Bartonella species (lineages B and C), while B. capreoli (lineage A) was not detected in the keds. Two novel Bartonella species (lineages D and E) were isolated from one ked. Conclusions Lipoptena fortisetosa likely serves as a vector of at least two Bartonella species (lineages B and C), whereas ticks do not seem to play a significant role in the transmission of Bartonella between sika deer based on the lower detection rates of Bartonella in ticks compared to keds. Bartonella species in lineages D and E appear to be L. fortisetosa-specific strains.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 859
Author(s):  
Weronika Maślanko ◽  
Katarzyna Bartosik ◽  
Magdalena Raszewska-Famielec ◽  
Ewelina Szwaj ◽  
Marek Asman

Insects of the genus Lipoptena, e.g., Lipoptena cervi and Lipoptena fortisetosa, are hematophagic ectoparasites mainly attacking deer, roe deer, moose, horses, and cattle. Humans may also be incidental hosts for these insects. The species are vectors of numerous pathogens, including Bartonella schoenbuchensis, Borrelia burgdorferi, and Anaplasma phagocytophilum. Due to the short time of feeding on humans, usually painless bites, and an initially small trace at the site of the bite, the symptoms reported by the patient may not be associated with deer ked infestation and infection with pathogens transmitted by these arthropods. The aim of the study was to describe the consequences of L. cervi bites in humans with detailed documentation of the development of skin lesions. The knowledge about skin lesions arising after deer ked bites may be useful in clinical practice for monitoring patients for the presence of pathogens transmitted by the parasites.


Parasitology ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. 1629-1635 ◽  
Author(s):  
Joanna Werszko ◽  
Żaneta Steiner-Bogdaszewska ◽  
Witold Jeżewski ◽  
Tomasz Szewczyk ◽  
Grzegorz Kuryło ◽  
...  

AbstractThe family Hippoboscidae is a less known group of blood-sucking flies. Deer ked are particularly important for animal health; they may act as potential vectors of disease to ungulates, and may transmit pathogens to animals and humans. The aim of this study was to investigate the presence of Trypanosoma (Megatrypanum) DNA in deer keds using molecular methods. Results prove the presence of Megatrypanum trypanosome DNA in the studied winged adult deer keds and this is the first detection of this pathogen in Lipoptena fortisetosa. In addition, this paper evidences the occurrence of L. fortisetosa in two new locations: one in the Białowieża Primeval Forest, and another in the Strzałowo Forest Inspectorate (Piska Forest), both in north-eastern Poland.


Author(s):  
Weronika Buczek ◽  
Alicja M. Buczek ◽  
Katarzyna Bartosik ◽  
Alicja Buczek

Background: The territorial expansion and increased population size of haematophagous arthropods (i.e., the castor bean tick Ixodes ricinus (Ixodida: Ixodidae) and the deer ked Lipoptena cervi (Diptera: Hippoboscidae)) has enhanced the risk of human infestations in Europe. The aim of our study was to present skin lesions induced by tick and deer ked bites in patients from recreational forest regions in southeastern Poland and pay attention to features of skin changes that may be useful in differential diagnosis. Methods: We compare the skin lesions after I. ricinus and L. cervi bite and draw attention to the biological and ecological traits of both ectoparasites, which may be diagnostically relevant for determination of the cause of skin symptoms reported by patients. Results: I. ricinus bites lead to development of erythematous-infiltrative poorly demarcated lesions with a centrally located bite mark, which usually disappears within one to several days. In turn, L. cervi bites leave irregularly shaped scattered erythematous papules. The papules may persist for up to one year and are accompanied by itching. Conclusions: Correct assessment of the clinical picture and its association with an arthropod bite (e.g., tick or deer ked) is highly important for further diagnostic procedures (i.e., differentiation of skin lesions developing in tick-borne diseases and, consequently, correct choice of pharmacological therapy). I. ricinus and L. cervi differ in their developmental cycles and rhythms of activity, which indicates that both species should be considered potential causative agents in the differential diagnosis of skin lesions when the patient has been bitten by an arthropod in autumn and winter months.


2020 ◽  
Author(s):  
Herakles Antonio Garcia ◽  
Pilar A. Blanco ◽  
Adriana C. Rodrigues ◽  
Carla M. F. Rodrigues ◽  
Carmen S. A. Takata ◽  
...  

Abstract Background The subgenus Megatrypanum comprises trypanosomes of cervids and bovids from around the world. Here, Odocoileus virginianus (white-tailed deer = WTD) and its ectoparasite, the deer ked Lipoptena mazamae (hippoboscid fly), were surveyed for trypanosomes in Venezuela. Results Haemoculturing unveiled 20% infected WTD, while 47% (7/15) of blood samples and 38% (11/29) of ked guts tested positive for the Megatrypanum- specific TthCATL-PCR. CATL and SSU rRNA sequences uncovered a single species of trypanosome. Phylogeny based on SSU rRNA and gGAPDH sequences tightly cluster WTD trypanosomes from Venezuela and the USA, which were strongly supported as geographical variants of the herein described Trypanosoma ( Megatrypanum ) perronei sp. n. In our analyses, T. perronei was closest to T . sp. D30 of fallow deer (Germany), both nested into TthII alongside other trypanosomes of cervids (North American elks and European fallow, red and sika deer), and bovids (cattle, antelopes and sheep). Insights into T. perronei life cycle were obtained from early haemocultures of deer blood and co-culture with mammalian and insect cells showing flagellates resembling Megatrypanum trypanosomes previously reported in deer blood, and deer ked guts. For the first time, a trypanosome from a cervid was cultured and phylogenetically and morphologically (light and electron microscopy) characterised. Conclusions In the analyses based on SSU rRNA, gGAPDH, CATL and ITS rDNA sequences, neither cervids nor bovids trypanosomes were monophyletic but intertwined within TthI and TthII major phylogenetic lineages. One host species can harbour more than one species/genotype of trypanosomes, but each trypanosome species/genotype was found in a single host species or in phylogenetically related hosts. Molecular evidence that L. mazamae may transmit T. perronei suggests important evolutionary constraints making tight the tripartite T. perronei –WTD–deer ked association. In a plausible evolutionary scenario, T. perronei entered South America with North American WTD at the Pliocene–Pleistocene boundary following the closure of the Panama Isthmus.


Sign in / Sign up

Export Citation Format

Share Document