scholarly journals Designing Aquifer Model for the Banks of the Serayu River, Sokawera, Somagede, Banyumas, Indonesia by Means of 1D-Electrical Resistivity Data

2021 ◽  
Vol 53 (3) ◽  
pp. 344-357
Author(s):  
Sehah Sehah ◽  
Hartono Hartono ◽  
Zaroh Irayani ◽  
Urip Nurwijayanto Prabowo

A geoelectric survey using the 1D-electrical resistivity method was applied to design a groundwater aquifer model for the banks of the Serayu River in Sokawera Village, Somagede District, Banyumas Regency, Indonesia. The aim of this research was to identify the characteristics of aquifers in the research area based on resistivity log data. Acquisition, modeling, and interpretation of resistivity data were carried out and the results were lithological logs at seven sounding points. Correlation between the lithological logs resulted in a hydrostratigraphic model. This model is composed of several hydrological units, i.e. shallow aquifer, aquitard, and deep aquifer. The shallow aquifers are composed of sandy clay (10.81-18.21 Wm) and clayey sand (3.04-7.43 Wm) with a depth of groundwater from the water table to 27.51 m. The deep aquifers are composed of sandstone with variation of porosity (2.24-12.04 Wm) at a depth of more than 54.98 m. Based on this model, potential shallow aquifers were estimated to be at sounding points Sch-5, Sch-6, and Sch-7. This hydrostratigraphic model shows that the two types of aquifers are separated by an aquitard layer, allowing groundwater infiltration from the shallow aquifer to the deep aquifer and vice versa. Moreover, the Serayu riverbanks in this research area are estimated to be a groundwater discharge area.

2020 ◽  
Vol 4 (2) ◽  
pp. 68-72
Author(s):  
Alaminiokuma G.I. ◽  
Omigie J.I.

Electrical resistivity survey was conducted around Students’ Hostels in FUPRE to delineate prolific aquifer for potable water to serve the teeming population of staff and students. Five vertical electrical soundings (VES) using Schlumberger electrode configuration with a maximum current electrode spread of 300m were employed for data acquisition. WINRESIST software was employed to execute the iteration and inversion processes of computing resistivities, depths and thicknesses of the various layers and the curve types. Results indicate that the area is characterized by 4 distinct geoelectric layers inferred differently at the VES locations. Two potential groundwater aquifer zones are delineated. The unconfined shallow aquifer zones found at VES 1, 3, 4 and 5 locations have shallow overburden depth ranging between 3.7-19.3m and coarse-grained sand columns with thicknesses ranging between 2.8-17.7m while the confined deep aquifer zone found at VES 2 location coincides with deep overburden layer at a depth of 42.6m and coarse-grained sand column with appreciable thickness of 19.1m. These results suggest that boreholes for sustainable groundwater supply around the Students’ Hostels should be sited at VES 2 location and screened at a depth ≥40.0m. However, aquifers at VES 1, 3, 4 and 5 have potentials for groundwater but are vulnerable to contamination. It is recommenced that electrical resistivity and hydrogeological surveys should be conducted at different locations in FUPRE, before any borehole(s) are drilled, to delineate the appropriate aquifer for potable groundwater supply and to avoid possible contamination.


2018 ◽  
Vol 8 (2) ◽  
pp. 71
Author(s):  
Sehah Sehah ◽  
Sukmaji Anom Raharjo ◽  
Abdullah Nur Aziz

The coastal hydrogeological model of iron ore prospect area in Widarapayung coastal, Cilacap Regency, has been designed and performed based on the 2D-resistivity data. The background of this research is potentiality of iron sand in this area and its prospect to be mined. Mining activities in large-scale may lead into surface decreasing, triggering damage to the aquifer, abrasion, and saltwater intrusion in the coastal area. The acquisition of 2D-resistivity data has been performed on five trajectories including of WP-01 up to WP-05. Based on the modeling results, it can be concluded that the sub-surface rocks resistivity profile consists of WP-01 with the values of 1.93-114.00 Ωm; WP-02 with the values of 3.67-121.00 Ωm; WP-03 with the values of 3.86-78.40 Ωm; WP-04 with the values of 1.79-100.00 Ωm; and WP-05 with the values of 2.61-86.20 Ωm. After interpretation, it is found that the hydrogeological profile of sub-surface rocks consists of sand inserted with gravels (topsoil); sand containing iron ore granules inserted with silt (topsoil and shallow aquifer); clayey sand (semi-aquifer layer); sandy clay (semi-impermeable layer); and sand (deep aquifer which is intruded by salt water). Based on the analysis, the sand containing iron ore is part of the shallow aquifer, so the mining activities of iron sand is potential to damage and reduce aquifer function in storing and flowing the groundwater in the research area.


2021 ◽  
Vol 22 (2) ◽  
pp. 89
Author(s):  
Sehah Sehah ◽  
Hartono Hartono ◽  
Zaroh Irayani ◽  
Urip Nurwijayanto Prabowo ◽  
Fajar Apriyanto ◽  
...  

Acquisition of resistivity data using the Schlumberger configuration has been carried out in the Serayu watershed area of Somagede Village, Somagede District, Banyumas Regency. The purpose of this research was to describe a groundwater aquifer model based on the interpretation of 1D-resistivity data. The research results are resistivity logs of subsurface rock distributed over seven sounding points with resistivity values ranging from 2.24-192.78 m. The sounding points are located at positions of 7°31′28.55″ and 109°19′8.65″ (Sch-1) to 7°31′18.79″ and 109°19′21.45″ (Sch-7). The interpretation of the resistivity logs has resulted in a lithology log at each sounding point. Based on the interpretation, the lithology of the research area is composed of topsoil (42.85-85.13 m), sandy clay which partly slightly wet (7.08-17.18m), sandy clay inserted with gravel (22.44-31.70 m), sand, gravel, and pebble, with various consolidated (22.16-192.78m), sand inserted by gravel (6.77m), alternating sandstone and claystone, some of which are alternated with marl and tuff (8.71-21.99m), and sandstones with various porosity (3.25-8.76m). Shallow aquifers are interpreted to exist in sand inserted by gravel layer (13.23-27.67 m) at the sounding point of Sch-2 where the potential is quite good. While deep aquifers are estimated to be present in the sandstone layer with various porosity (> 46.67 m) at all sounding points with very good potential.Keywords: 1D-resistivity, Serayu watershed, resistivity log, aquifer, Somagede Village.


2019 ◽  
Vol 11 (7) ◽  
pp. 2031 ◽  
Author(s):  
Guangwen Shao ◽  
Danrong Zhang ◽  
Yiqing Guan ◽  
Yuebo Xie ◽  
Feng Huang

In the original soil and water assessment Tool (SWAT) model (SWAT-O), the contributions of shallow aquifers and deep aquifers to streamflow are simulated using the linear reservoir method. The movement of groundwater was limited in the hydrological response unit which is a minimum calculation unit in the SWAT. However, this computational method may not be suitable for the areas where a groundwater system is complicated, and the river is predominately recharged by groundwater. In this paper, we proposed an enhanced groundwater module which divides shallow aquifers into upper and lower aquifers, integrates all the deep aquifers of a sub-basin into a regional aquifer, and simulates interactive water amount between lower aquifer and deep aquifer using water depth difference. The modified groundwater module was introduced to the original SWAT model, hereby referred to as SWAT-MG. The SWAT-MG and SWAT-O models were applied to the Hailiutu River catchment, which is a semi-arid wind sandy grass shoal catchment. Results showed that both models underestimated streamflow in peak flow, while the simulated streamflow of SWAT-MG was closer the observed values than that of SWAT-O. Three evaluation criteria (NSE, RSR, PBIAS) were applied to evaluate the performance of the models and the results showed that SWAT-MG had a better performance than SWAT-O. The baseflow index of Hailiutu River which was calculated by the results of SWAT-MG was 96.78%, which means the streamflow is predominately recharged by groundwater, and this conforms to the actual situation of Hailiutu River catchment. This indicates that a SWAT model with a modified groundwater module could better represent the groundwater flow behavior in the study area.


2018 ◽  
Vol 65 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Oluseun Adetola Sanuade ◽  
Abayomi Adesola Olaojo ◽  
Adesoji Olumayowa Akanji ◽  
Michael Adeyinka Oladunjoye ◽  
Gabriel E. Omolaiye

Abstract This geophysical study was carried out to determine the occurrence of phosphate nodules in the Oshoshun Formation of the Dahomey Basin, Southwestern Nigeria. The electrical resistivity method, comprising 1D vertical electrical sounding (VES; using Schlumberger array) and 2D geoelectrical imaging (using Wenner array), was used to determine the nature and depth of occurrence of the phosphate nodules. Six profile lines were established within the study area, and inverted sections were generated from the apparent resistivity data using DIPRO inversion algorithm. Five VES points were also acquired in the study area, and Win- Resist programme was used to process and interpret the field resistivity data. Four pits were dug along the profiles to verify the interpreted results. The results obtained by both techniques reveal similar geoelectric units: the top soil, clay, clayey sand and clay at different depths. These layers host pockets of phosphate nodules (78-≥651 Ωm) with varying thicknesses. The strong correlation between the lithology profiles obtained from the pits and the interpreted results of the inverted apparent resistivity sections demonstrates the efficacy of the electrical resistivity method in characterising phosphate occurrence within the formation.


2019 ◽  
Vol 59 ◽  
pp. 73-78
Author(s):  
Sharmila Neupane ◽  
Ananta Prasad Gajurel ◽  
Nir Shakya ◽  
Maartin Lupker ◽  
Rabina Hada

The Sunsari and the Morang Districts confine the eastern region of the Koshi River and are considered as a huge potential of groundwater zones. The study mainly focuses on the concept of delineation of recharge source of groundwater and connection between aquifer system through isotopic analysis. Altogether 33 samples are collected from surface and groundwater for the isotopic analysis. Majority of the samples of flowing artesian wells are encountered under the range of -7.03‰ to -6.53‰. The shallow aquifers fall under the range of -5.94‰. to -5.34‰ and deep aquifers fall over a wide range of -7.13 ‰. to -6.53‰ for δ18O. Clustering of samples from isotopic analysis gives idea of surface water and groundwater interconnection along with the recharge source identification. Isotopic variation of majority of samples ranges from -7.34‰ to -4.74‰ while depleted value for δ18O is -10.16‰ in shallow aquifer of Jamungachhi, which indicates that the recharge source is precipitation at higher elevation. The d excess (greater than 10‰) concluded that the aquifer system in the study area is complex and recharged from various sources. The range of enrichment is measured as 2.6‰< 1.96‰<1.87‰<1.55‰ for shallow aquifers, rivers, deep aquifers and flowing artesian well. The significant increase in coarse particle towards the northern part reveals the good aquifer sequence in the northern zone and proves the best recharge area. The overall aquifer system in the study area is complex and recharged from various sources. Most of the aquifers are recharged from the river sand precipitation at higher altitude.


Author(s):  
Soumaya Aouiti ◽  
Fadoua Hamzaoui Azaza ◽  
Fetheddine El Melki ◽  
Monji Hamdi ◽  
Fulvio Celico ◽  
...  

Abstract The Hajeb Layoun-Jelma basin, located in the central Tunisia, is the principal source of water supply for Sidi Bouzid and Sfax region. The over-abstraction from this groundwater, since 1970, and the intensive agriculture activities led to the degradation of the water quantity and quality. The quality evaluation for this groundwater is very important tool for sustainable development and decision for water management. A total of 28 groundwater samples, from shallow, springs, and deep aquifers, were collected, storage and analyzed to evaluate its quality suitability for domestic and agriculture purposes using geographic information system and geochemical methods. For the both aquifers, the abundance of cations: Na > Mg > Ca > K, and of anions in the order: Cl > HCO3 > SO4. The dominant hydrochemical facies, for the shallow aquifer and springs, are Na-Cl and Ca-Mg-Cl; for the deep aquifer, the geochemical facies are Na-Cl, Ca-Mg-Cl, and Ca-Cl. The comparison of the major parameters and the chemical data with the World Health Organization standards and the national standards indicate that this groundwater is suitable for drinking, except in some samples, with high salinity concentrations. The water quality was assessed, for drinking uses, using “water quality index,” “entropy,” and “improved water quality index.” The results mentioned that the improved water quality index is the best method which indicated that the poor water quality coincide with the Na-Cl water type. The entropy method and the water quality index present the optimistic methods. The irrigation suitability assessment was made using various parameters (SAR, TH, % Na, PI, MH, KR, EC). The results revealed that the majority of samples in Hajeb Layoun-Jelma basin are not appropriate for irrigation uses.


Author(s):  
O. J. Airen ◽  
P. S. Iyere

Geophysical investigations using three-dimensional (3D) grid formation was carried out in Ovia North East Local Government Area of Edo State, Nigeria for subsurface lithology characterisation so as to generate a comprehensive basemap of the study area. Twelve (12) traverses in form of a rectangular grid were occupied for the 2D Electrical Resistivity Imaging (ERI) using the Wenner array. The 2D were all collated to form the 3D grid. The 2D Electrical Resistivity data was processed by the inversion of the 2D apparent resistivity data using the DIPRO software to generate the 2D inverted resistivity section while the 3D inverted resistivity model was done by inverting all the twelve traverses using 3DEarthimager software to model the 3D cube. The results of the 2D ERI revealed three (03) to five (05) resistivity structures across the twelve traverses indicating clay/clayey sand, sand and sandstone on a 200 and 300 m lateral distance and corresponding depth of 39.6 and 57.3 m across each traverses. Resistivity values generally varies from 16.8 – 45302 Ωm across Traverse 1 – 12. The layer horizontal depth slices of the 3D inverted resistivity distribution are in six layers, which are; 0 - 5 m, 5 – 10.8 m, 10.8 – 17.4 m, 17.4 – 25 m, 25 – 33.7 m and 33.7 – 43.8 m. The 3D inverted resistivity model within the study area covered lateral plane (the roll axis), 300 m, in the x plane (the pitch axis), 200 m lateral distance was covered and in the depth plane (the yaw axis), a maximum depth of 66 m is imaged. The inverted 3D Resistivity values generally vary from 189 - 6149 Ωm across the study area. The resistivity structures delineated from the 3D model are clayey sand and sand.


2016 ◽  
Vol 16 (5) ◽  
pp. 1231-1242 ◽  
Author(s):  
Fawen Li ◽  
Xi Li ◽  
Yong Zhao ◽  
Jiale Qiao ◽  
Ping Feng

The assembly of a groundwater flow model for the shallow aquifer in Tianjin Municipality is outlined in this paper. Tianjin Municipality was selected because of its complicated hydrogeological conditions and rich data, which could be used to test a refined groundwater flow model for the shallow aquifer. When a shallow groundwater flow model is being assembled its recharge and discharge functions need to represent inflows from rainfall, irrigation return flows, seepage from rivers and reservoirs, and lateral inflows and outflows from evaporation, abstraction of groundwater for irrigation and industrial, and urban use. When abstracting groundwater, the water exchanges between a shallow aquifer and a deep aquifer also need to be considered. The real irrigation areas of Tianjin Municipality were input into the groundwater flow model, and the rivers and reservoirs were refined to the level of secondary tributaries and small scale reservoirs. The model calibration was carried out based on consideration of representative parameter values and their spatial distribution, the groundwater flow fields, the temporal variation in groundwater heads and the water balance for the years 2006–2008. It was concluded from a comparison of the observed and simulated groundwater heads that the precision of the model is high and that the simulated groundwater levels align with the real groundwater conditions. It is also concluded that the groundwater flow model for the shallow aquifer in Tianjin Municipality will be a useful tool for further studies about the relationship between shallow and deep aquifers and the surface environment.


Author(s):  
Muhammad Sehah ◽  
Sukmaji Anom Raharjo ◽  
Fajar Destiani

Interpretation of 2D-subsurface rock resistivity data has been carried out in the iron ore prospect area of Eastern Binangun Coastal in ​​Cilacap Regency, Central Java. The background of this research is the potential for abundant iron sand in this area that prospects to be exploited. The research was conducted using a magnetic method in 2017 to map the distribution patterns of the local magnetic anomalies that were interpreted to originate from the distribution of iron ore in the subsurface. In 2018, the research continued using the 2D-resistivity method to find out the lithology section in the subsurface of research area. 2D-resistivity data acquisition is carried out on four tracks consisting of Bng-01 to Bng-04. The resistivity data modeling have produced the true resistivity value for each track in the form of the subsurface resistvity section, which including the Bng-01 track is 2.27 – 44.1 Ωm; the Bng-02 track is 4.5 – 58.6 Ωm; the Bng-03 track is 6.37 – 63.4 Ωm; and the Bng-04 track of 4.98 – 83.3 Ωm. After interpretation process, some models of subsurface rocks lithology section is obtained under the four trajectories. The rocks resulted from interpretation process consists of sand which inserted with gravel (> 58.6 Ωm); sand containing iron ore grains (28.2 – 83.3 Ωm), clayey sand (11.1 – 32.9 Ωm), sandy clay (4.98 – 13.5 Ωm), and fine sand which intruded by saltwater (<6.49 Ωm). Sand containing iron ore grains is main part of the coastal aquifer so that exploitation of iron sand has the potential to reduce aquifer function in storing and flowing of groundwater and causing of abrasion in the Eastern Binangun Coastal area.


Sign in / Sign up

Export Citation Format

Share Document