lf refining
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 39 (1) ◽  
pp. 424-432
Author(s):  
Hangyu Zhu ◽  
Jixuan Zhao ◽  
Jianli Li ◽  
Qian Hu ◽  
Chenxi Peng

AbstractThe formation and evolution of nonmetallic inclusions in pipeline steel were investigated by SEM, EDS and INCA Feature Analysis System, with the industrial process of electric arc furnace → ladle furnace (LF) refining → vacuum degassing → continuous casting. The composition, size and amount of inclusions during refining process were discussed systematically. The results show that inclusions at each refining step are mainly small-particle inclusions (below 5 µm), and the total number of inclusions has been reduced significantly due to the refining effect of slag during LF refining. The calcium (Ca) treatment increases the amount of small inclusions. The types of inclusion are mainly Al2O3 and MnO–SiO2–Al2O3 before LF, and they are transformed into CaO–Al2O3, MgO–Al2O3 and CaO–MgO–Al2O3 during LF process. After Ca treatment, inclusions are changed to CaO–Al2O3–(CaS) and CaO–MgO–Al2O3–(CaS). Typical inclusions are still mainly CaO–Al2O3 and CaO–MgO–Al2O3 in tundish, but the composition of those inclusions has been changed and located to the low melting point region in ternary phase diagram. Such inclusions will further be removed as continuous casting approaches.


2020 ◽  
pp. 1-6
Author(s):  
Jianfei Xu ◽  
Kunpeng Wang ◽  
Ying Wang ◽  
Zhidong Qu ◽  
Xingkuang Tu ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 788
Author(s):  
Jialiu Lei ◽  
Dongnan Zhao ◽  
Wei Feng ◽  
Zhengliang Xue

High-strength tire cord steel is mainly used in radial ply tires, but the presence of brittle Ti inclusions can cause failure of the wires and jeopardize their performance in production. In order to control the titanium content during steel production, a thermodynamic model for predicting the titanium distribution ratio between CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags during the ladle furnace (LF) refining process at 1853 K has been established based on the ion–molecule coexistence theory (IMCT), combined with industrial measurements, and the effect of basicity on the titanium distribution ratio was discussed. The results showed that the titanium distribution ratio predicted by the developed IMCT exhibited a dependable agreement with the measurements, and the optical basicity is suggested to reflect the correlation between basicity and the titanium distribution ratio. Furthermore, quantitative titanium distribution ratios of TiO2, CaO·TiO2, MgO·TiO2, FeO·TiO2, and MnO·TiO2 were acquired by the IMCT model, respectively. Calculation results revealed that the structural unit CaO plays a pivotal role in the slags in the de-titanium process.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 257 ◽  
Author(s):  
Xingrun Chen ◽  
Guoguang Cheng ◽  
Yuyang Hou ◽  
Jingyu Li

The inclusions formed in 304L stainless steel for nuclear power produced by the electric arc furnace (EAF)-argon oxygen decarburization furnace (AOD)-ladle furnace (LF)-continuous casting (CC) process were investigated by thermodynamics calculations and experimental results. The results showed that the inclusions after AOD and LF refining were almost the same as the slag composition. The types of inclusions (sizes larger than 5 µm) were mainly CaSiO3 with high SiO2 content at the end of AOD, and Ca2SiO4 with high CaO content at the end of LF. The Al2O3 and MgO content of inclusions increased from AOD to LF. There were two types of inclusions in the tundish: CaO-SiO2-Al2O3-MgO and CaO-SiO2-Al2O3-MgO-MnO inclusions with MgO·Al2O3 spinel precipitation. The content of Al2O3 in the inclusions increased rapidly with the decrease in temperature from the end of LF refining to continuous casting, as calculated using FactSage6.3 software. The rapid increase of Al2O3 in the CaO-SiO2-Al2O3-MgO-(MnO) inclusions promoted the precipitation of MgO·Al2O3 spinel in continuous casting tundish, suggesting mechanisms for the formation of inclusions in the 304L stainless steel.


2019 ◽  
Vol 116 (6) ◽  
pp. 619
Author(s):  
Xingrun Chen ◽  
Guoguang Cheng ◽  
Yuyang Hou ◽  
Jingyu Li

The morphology, composition, size, and number of inclusions in 439 ultra-pure ferritic stainless steel samples were analyzed using an automatic scanning electron microscope combined with an energy-dispersive X-ray spectrometer. In addition, the appropriate contents of titanium, aluminum, and calcium were analyzed through the coupling of thermodynamics calculation and experimental results. CaO-Al2O3-MgO inclusions existed in the 439 steel before Ti additions in the ladle furnace (LF) refining process. After Ti addition in the LF refining process, the inclusions were transformed into CaO-Al2O3-MgO-TiOx inclusions. The evolution of these inclusions was consistent with thermodynamic calculation, which indicated that when the Al, Ca, and Ti contents were within a reasonable range, Ca treatment could significantly modify the aluminate and spinel to form CaO-Al2O3-MgO liquid inclusions. In addition, the compositions of inclusions after the addition of titanium were mostly located in the Al2O3-TiOx stable phase. The collision of the CaO-Al2O3-MgO liquid inclusions and Al2O3-TiOx inclusions resulted in the modification of the CaO-Al2O3-MgO-TiOx inclusions. The compositions of most inclusions were located in the liquid zone. The control range of the aluminum, calcium, and titanium contents was obtained: logAl% ≥ 1.481logTi% − 0.7166, Ca% ≥ 34.926(Al%)3 − 3.3056(Al%)2 + 0.1112(Al%) − 0.0003.


2019 ◽  
Vol 116 (4) ◽  
pp. 411
Author(s):  
Yuxiang Dai ◽  
Jing Li ◽  
Chengbin Shi ◽  
Wei Yan

The influence of refining slag-changing operation on the compositions of 82B steel and inclusions were studied on the basis of plant trials combined with thermodynamic analysis. The optimized refining slag system for the refining of 82B steel was obtained through the plant experiments. The slag-changing operation had no effect on the type of oxide inclusions (CaO-SiO2-MnO-Al2O3) compared with the operation without slag-changing, whereas the CaO/SiO2 in inclusions decreased with the decrease of basicity of the top slag. The liquidus temperature of oxide inclusions were decreased with the slag-changing operation. The basicity of the refining slag should be controlled in the range of 2.5 to 3 at the early stage of LF in order to control the oxygen and sulfur in steel. At the later stage of LF refining, the basicity of refining slag should be changed to 1∼1.5, aiming to reduce the activity of [Al] in molten steel and target the good plasticity of oxide inclusions.


2018 ◽  
Vol 58 (11) ◽  
pp. 2032-2041 ◽  
Author(s):  
Changyong Chen ◽  
Zhouhua Jiang ◽  
Yang Li ◽  
Meng Sun ◽  
Guoqing Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document