Microscopic techniques for characterization and authentication of oil‐yielding seeds

Author(s):  
Aqsa Aziz ◽  
Mushtaq Ahmad ◽  
Riaz Ullah ◽  
Ahmed Bari ◽  
Muhammad Yahya Khan ◽  
...  
Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Author(s):  
Quintin J. Lai ◽  
Stuart L. Cooper ◽  
Ralph M. Albrecht

Thrombus formation and embolization are significant problems for blood-contacting biomedical devices. Two major components of thrombi are blood platelets and the plasma protein, fibrinogen. Previous studies have examined interactions of platelets with polymer surfaces, fibrinogen with platelets, and platelets in suspension with spreading platelets attached to surfaces. Correlative microscopic techniques permit light microscopic observations of labeled living platelets, under static or flow conditions, followed by the observation of identical platelets by electron microscopy. Videoenhanced, differential interference contrast (DIC) light microscopy permits high-resolution, real-time imaging of live platelets and their interactions with surfaces. Interference reflection microscopy (IRM) provides information on the focal adhesion of platelets on surfaces. High voltage, transmission electron microscopy (HVEM) allows observation of platelet cytoskeletal structure of whole mount preparations. Low-voltage, high resolution, scanning electron microscopy allows observation of fine surface detail of platelets. Colloidal gold-labeled fibrinogen, used to identify the Gp Ilb/IIIa membrane receptor for fibrinogen, can be detected in all the above microscopies.


Author(s):  
D. J. McComb ◽  
N. Ryan ◽  
E. Horvath ◽  
K. Kovacs ◽  
E. Nagy ◽  
...  

Conventional light and electron microscopic techniques failed to clarify the cellular composition and derivation of spontaneous and induced, intrasellar and transplanted pituitary adenomas in rats (1). In the present work, electron microscopic immunocytochemistry was applied to evaluate five adenohypo-physial tumors using a technique described by Moriarty and Garner (2). Spontaneously occurring pituitary adenomas (group 1) were harvested from aging female Long-Evans rats. R-Amsterdam rats were treated with 2 x 1.0 mg estrone acetate (HogivaI) s.c. weekly for 6 months. Pituitary adenomas in excess of 30 mg were removed from these animals to make up the tumors of group 2. Groups 3 and 4 consisted of estrogen-induced autonomous transplan¬ted pituitary tumors MtT.WlO and MtT.F4. Group 5 was a radiation-induced transplanted autonomous pituitary tumor MtT.W5. The tumors of groups 3,4 and 5 were allowed to proliferate in host rats 6-8 weeks prior to removal for processing. Tissue was processed for transmission electron microscopy (glutaraldehyde fixation, OsO4 postfixation and epoxy resin embedding), and electron microscopic immunocytochemistry (3% paraformaldehyde fixation and Araldite embedding).


1967 ◽  
Vol 17 (01/02) ◽  
pp. 112-119 ◽  
Author(s):  
L Dintenfass ◽  
M. C Rozenberg

SummaryA study of blood coagulation was carried out by observing changes in the blood viscosity of blood coagulating in the cone-in-cone viscometer. The clots were investigated by microscopic techniques.Immediately after blood is obtained by venepuncture, viscosity of blood remains constant for a certain “latent” period. The duration of this period depends not only on the intrinsic properties of the blood sample, but also on temperature and rate of shear used during blood storage. An increase of temperature decreases the clotting time ; also, an increase in the rate of shear decreases the clotting time.It is confirmed that morphological changes take place in blood coagula as a function of the velocity gradient at which such coagulation takes place. There is a progressive change from the red clot to white thrombus as the rates of shear increase. Aggregation of platelets increases as the rate of shear increases.This pattern is maintained with changes of temperature, although aggregation of platelets appears to be increased at elevated temperatures.Intravenously added heparin affects the clotting time and the aggregation of platelets in in vitro coagulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina R. Lenhardt ◽  
Hergen Breitzke ◽  
Gerd Buntkowsky ◽  
Erik Reimhult ◽  
Max Willinger ◽  
...  

AbstractWe report here on structure-related aggregation effects of short-range ordered aluminosilicates (SROAS) that have to be considered in the development of synthesis protocols and may be relevant for the properties of SROAS in the environment. We synthesized SROAS of variable composition by neutralizing aqueous aluminium chloride with sodium orthosilicate at ambient temperature and pressure. We determined elemental composition, visualized morphology by microscopic techniques, and resolved mineral structure by solid-state 29Si and 27Al nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Nitrogen sorption revealed substantial surface loss of Al-rich SROAS that resembled proto-imogolite formed in soils and sediments due to aggregation upon freezing. The effect was less pronounced in Si-rich SROAS, indicating a structure-dependent effect on spatial arrangement of mass at the submicron scale. Cryomilling efficiently fractured aggregates but did not change the magnitude of specific surface area. Since accessibility of surface functional groups is a prerequisite for sequestration of substances, elucidating physical and chemical processes of aggregation as a function of composition and crystallinity may improve our understanding of the reactivity of SROAS in the environment.


2017 ◽  
Vol 270 ◽  
pp. 107-111
Author(s):  
Zuzana Andršová ◽  
Pavel Kejzlar

Many of currently manufactured components intended for automotive, must not only meet the requirements on functionality, but also considerable demands on the visual appearance. Parts are subjected to thorough inspection and suppliers are forced to deal with causes of a very slight visual defects. When examining the defects, it is necessary to use a whole range of advanced analytical methods and procedures previously used only for identification of the physical and chemical properties and structure of the material. This paper deals with several examples which have been solved. It focuses especially on the use of demanding metallographic sample preparation from components with surface defects, examining the defects on the cross-section using mainly microscopic techniques and determining the causes of their generation. These results then serve as a basis for modification of the technology and thus they are the tool for significant reduction of amount of NOK parts.


2004 ◽  
Vol 10 (5) ◽  
pp. 513-527 ◽  
Author(s):  
Wanderley de Souza ◽  
Adriana Lanfredi-Rangel ◽  
Loraine Campanati

Giardia lambliais a flagellated protozoan of great medical and biological importance. It is the causative agent of giardiasis, one of the most prevalent diarrheal disease both in developed and third-world countries. Morphological studies have shown thatG. lambliadoes not present structures such as peroxisomes, mitochondria, and a well-elaborated Golgi complex. In this review, special emphasis is given to the contribution made by various microscopic techniques to a better knowledge of the biology of the protozoan. The application of video microscopy, immunofluorescence confocal laser scanning microscopy, and several techniques associated with transmission electron microscopy (thin section, enzyme cytochemistry, freeze-fracture, deep-etching, fracture-flip) to the study of the cell surface, peripheral vesicles, endoplasmic reticulum–Golgi complex system, and of the encystation vesicles found in trophozoites and during the process of trophozoite-cyst transformation are discussed.


Sign in / Sign up

Export Citation Format

Share Document