scholarly journals Nonmetallic plasmonic heterostructures with multi-synergies on boosting hot electron generation for CO2 photoreduction

Author(s):  
Zaizhu Lou ◽  
Changhai Lu ◽  
Xinru Li ◽  
Juan Li ◽  
Liang Mao ◽  
...  

Abstract Constructing multi-physical effects on semiconductors is one new horizon to develop next-generation photocatalysts. Here we use pyroelectric black phosphorus (BP) to couple with nonmetallic plasmonic tungsten oxides (WO) forming a BP/WO heterostructures as photocatalysts to convert CO2 for CO under visible-near-infrared (Vis-NIR) light irradiation. Nonmetallic plasmonic heterostructures exhibit 26.1 µmol h− 1 g− 1 CO generation with a selectivity of 98 %, and which is 7- and 17-fold higher than those of plasmonic WO and pyroelectric BP, respectively. The interface P-O-W bonds in heterostructures are constructed to work as channels for electron transfer from BP to plasmonic WO. Moreover, the photothermal energy generated by SPR excitation on WO can make the temperature of heterostructures rapidly increasing from 24 to 86 oC in 10 min, triggering the pyroelectric BP for carriers to promote electron transfer. Multi-physical effects including plasmonic hot carriers and photothermal effect of WO, intrinsic band excitation and pyroelectric effect of BP and W-O-P bonds play synergistic roles on boosting hot electron generation for CO2 reduction. This work provides clear proofs to demonstrate that constructing multi-physical effects on semiconductors is one useful strategy to promote NIR-harvesting for artificial photosynthesis.

MRS Advances ◽  
2015 ◽  
Vol 1 (13) ◽  
pp. 831-837 ◽  
Author(s):  
A. Elfaer ◽  
Y. Wang ◽  
X. H. Li ◽  
J. B. Chou ◽  
S-G. Kim

ABSTRACTWe recently demonstrated a sub-bandgap photoresponse with our wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC). The sub-bandgap energy with 590 nm peak could be absorbed in the form of hot electron and injected to TiO2, which provides 5.28 times more energy for photolysis than that of energy absorbed to flat TiO2. If the solar energy already absorbed above 700 nm could be injected to the catalyst, higher than 10 times improvement will be achieved, and above 20% solar to fuel efficiency will be feasible with the robust but inefficient TiO2 catalyst. In order to achieve photocurrent near and above 700 nm spectrum, we deposited gold nanorods on the surface of MSPhC to incur localized surface plasmon (LSP) modes absorption and subsequent injection to the TiO2 catalyst. We used electrophoretic deposition (EPD) method to deposit nanorods on the top, sidewall and bottom well surface of the photonic nanocavities. The deposition of nanorods was achieved reasonably uniform and sparse not to block the optical cavities of MSPhC. Flat gold surfaces were tested at 4 different suspension densities to get the optimum gold nanorods density. Under 10V applied electric field, positively charged gold nanorods at the concentration of 6.52×1013 #/mL could deposit MSPhC surface with the density of 230 #/µm2, which was reasonably uniform and sparse. Preliminary tests show an absorbance increase near 700 nm on flat device coated with gold nanorods. Photocurrent measurement is under way to demonstrate the enhanced hot electron transfer over full visible light and near-infrared solar spectrum.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fengtong Ji ◽  
Ben Wang ◽  
Li Zhang

Micro/nanomachines have attracted extensive attention in the biomedical and environmental fields for realizing functionalities at small scales. However, they have been rarely investigated as active nanocatalysts. Heterogeneous nanocatalysts have exceptional reusability and recyclability, and integration with magnetic materials enables their recovery with minimum loss. Herein, we propose a model active nanocatalyst using magnetic nanomotor ensembles (MNEs) that can degrade contaminants in an aqueous solution with high catalytic performance. MNEs composed of a magnetite core coated with gold nanoparticles as the nanocatalyst can rotate under the action of a programmable external field and carry out rapid reduction of 4-nitrophenol (4-NP). The hydrogen bubbles generated in the catalytic reaction provide random perturbations for the MNEs to travel in the reaction solution, resulting in uniform processing. The reduction can be further boosted by irradiation with near-infrared (NIR) light. Magnetic field induces the rotation of the MNEs and provides microstirring in the catalysis. Light enhances the catalytic activity via the photothermal effect. These MNEs are also capable of moving to the targeted region through the application of a programmable magnetic field and then process the contaminant in the targeted region. We expect that such magnetic MNEs may help better in applying active heterogeneous nanocatalysts with magnetic field and light-enhanced performance in industrial applications due to their advantages of low material cost and short reaction time.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5980
Author(s):  
SeongHoon Jo ◽  
In-Cheol Sun ◽  
Wan Su Yun ◽  
Jinseong Kim ◽  
Dong-Kwon Lim ◽  
...  

Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment.


2021 ◽  
Vol 17 (6) ◽  
pp. 1131-1147
Author(s):  
Sijin Xiang ◽  
Zhongxiong Fan ◽  
Duo Sun ◽  
Tianbao Zhu ◽  
Jiang Ming ◽  
...  

The overall eradication of biofilm-mode growing bacteria holds significant key to the answer of a series of infection-related health problems. However, the extracellular matrix of bacteria biofilms disables the traditional antimicrobials and, more unfortunately, hampers the development of the anti-infectious alternatives. Therefore, highly effective antimicrobial agents are an urgent need for biofilm-infection control. Herein, a PEGylated palladium nanozyme (Pd-PEG) with peroxidase (POD)-like activity for highly efficient biofilm infection control is reported. Pd-PEG also shows the intrinsic photothermal effect as well as near-infrared (NIR) light-enhanced POD-like activity in the acidic environment, thereby massively destroying the biofilm matrix and killing the adhering bacteria. Importantly, the antimicrobial mechanism of the synergistic treatment based on Pd-PEG+H2O2+NIR combination was disclosed. In vitro and in vivo results illustrated the designed Pd-PEG+H2O2 +NIR treatment reagent possessed outstanding antibacterial and biofilms elimination effects with negligible biotoxicity. This work hopefully facilitates the development of metal-based nanozymes in biofilm related infectious diseases.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Guo Li ◽  
Ruyi Zhou ◽  
Weili Zhao ◽  
Bo Yu ◽  
Jie Zhou ◽  
...  

Hypoxia significantly compromises the therapeutic performance of photodynamic therapy (PDT) owing to the oxygen level which plays a key role in the production of singlet oxygen (1O2). Herein, the photothermally responsive phase change materials (PCM) are used to encapsulate 1,4-dimethylnaphthalene-functionalized platinum(II)-acetylide conjugated polymer (CP1) with intense near-infrared (NIR) absorption to prepare new 1O2 nanocarriers (CP1-NCs). The 1,4-dimethylnaphthalene moieties in CP1-NCs can trap the 1O2 produced from CP1 under irradiation and form a stable endoperoxide. Then, the endoperoxide undergoes cycloreversion to controllably release 1O2 via the NIR light-triggered photothermal effect of CP1 and controllable phase change of PCM, which can be used for oxygen-independent PDT for hypoxic tumor. Furthermore, the in vivo luminescence imaging-guided synergistic PDT and photothermal therapy showed better efficiency in tumor ablation. The smart design shows the potent promise of CP1-NCs in PCM-controlled and sustainable phototherapy under tumor hypoxic microenvironment, providing new insights for constructing oxygen-independent precise cancer phototherapeutic platform.


2019 ◽  
Vol 214 ◽  
pp. 341-351 ◽  
Author(s):  
Supriya Atta ◽  
Fuat E. Celik ◽  
Laura Fabris

We synthesize TiO2-coated gold nanostar- and gold nanorod-based photocatalysts and identify the most important design parameters for the optimization of hot electron-based photocatalysts.


2019 ◽  
Vol 31 (43) ◽  
pp. 1903829 ◽  
Author(s):  
Yuanfang Yu ◽  
Yue Sun ◽  
Zhenliang Hu ◽  
Xuhong An ◽  
Dongming Zhou ◽  
...  

2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


Sign in / Sign up

Export Citation Format

Share Document