si supply
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Author(s):  
William Bruno Silva Araújo ◽  
Gelza Carliane Marques Teixeira ◽  
Renato de Mello Prado ◽  
Antonio Márcio Souza Rocha

Abstract Forages are one of the most cultivated crops in the world. However nutritional deficiency is common, specifically in N, P and Ca in many forages growing regions. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on in forages plants are still scarce. This research was carried out to evaluate whether the Si supply can mitigate the effects of N, P and Ca deficiencies of two forages and the physiological and nutritional mechanisms involved. Two experiments were carried out with two forage species (Urochloa brizantha cv. Marandu and Megathyrsus maximum cv. Massai). Was used nutrient solution under balanced nutrition conditions and nutritional stress due to the lack of N, P and Ca combined with the -Si and +Si. The deficiencies of N, P and Ca in both forages cultivation caused damage to physiological and nutritional variables, hence decreasing the plant dry matter. However, in both species forages the addition of Si to the nutrient solution decreased the extravasation of cellular electrolytes and increased the content of phenolic compounds, the green color index, the quantum efficiency of photosystem II, the efficiencies of use of N, P and Ca and the production of shoot dry mass. The beneficial effects of Si were evidenced in stressed and non-stressed plants. The research emphasized the advantage of using Si for the growth of U. brizantha and M. maximum under N, P and Ca deficiency, contributing to their sustainable cultivation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Carolina Sales ◽  
Cid Naudi Silva Campos ◽  
Jonas Pereira de Souza Junior ◽  
Dalila Lopes da Silva ◽  
Kamilla Silva Oliveira ◽  
...  

AbstractNutritional deficiency is common in several regions of quinoa cultivation. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on quinoa plants are still scarce. Given this scenario, our objective was to evaluate the symptoms in terms of tissue, physiological and nutritional effects of quinoa plants submitted to nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) deficiencies under Si presence. The experiment consisted of a factorial scheme 6 × 2, using a complete solution (CS), -N, -P, -K, -Ca, -Mg combined with absence and presence of Si (1.5 mmol L−1). Symptomatic, physiological, nutritional and evaluation vegetative were performed in quinoa crop. The deficiencies of N, P, K, Ca and Mg in quinoa cultivation caused visual symptoms characteristic of the deficiency caused by respective nutrients, hence decreasing the plant dry mass. However, Si supply attenuated the deficiency effects by preserving the photosynthetic apparatus, increasing the chlorophyll production, increasing the membrane integrity, and decreasing the electrolyte leakage. Thus, the Si supply attenuated the visual effects provided by deficiency of all nutrients, but stood out for N and Ca, because it reflected in a higher dry mass production. This occurred because, the Si promoted higher synthesis and protection of chlorophylls, and lower electrolyte leakage under Ca restriction, as well as decreased electrolyte leakage under N restriction.


2021 ◽  
Author(s):  
Jelena Dragisic Maksimovic ◽  
Milos Mojovic ◽  
Vuk Maksimovic

<p>An impressive body of Si research could be found in the literature despite the fact that, from a biochemical perspective, Si is a “monotonous” element largely uncharged and unreactive at physiological pH (forming mostly silicates and SiO<sub>2</sub> polymers). However, the detailed role of Si in plants remains unexploited, particularly the potential for its practical application. One of the main properties of Si intensively explored is the protection mechanism(s) against biotic and abiotic stresses, especially heavy metal stress. To investigate the effect of Si application on the Mn binding potential of the leaf apoplast, cucumber plants were grown in nutrient solutions with optimal (0.5 µM) or excessive (100 µM) Mn concentrations with or without Si supply to roots. Leaves were subjected to fractionated extraction of Mn revealing a relative distribution of Mn fractions in cucumber leaves: water-extractable (WE) Mn represents the soluble fraction in the cell walls; the protein-bound (PB) Mn fraction originates mostly from the symplast; while the cell wall-bound (CWB) Mn fraction represents Mn which is fixed to the wall structure. After the high Mn supply (100 µM), the concentration of WE Mn was 10-fold higher compared to control, while the relative proportion of the WE Mn fraction decreased from 56% in control to 23% in high Mn treatment. Si application did not affect WE and PB Mn fractions in the control treatment but significantly decreased these fractions in the high Mn treatment. On the other hand, the CWB Mn significantly increased in the leaves of Si-fed plants. Data obtained by fractionated Mn extraction are consistent with the relative proportion of free and bound Mn, estimated from the recorded electron paramagnetic resonance (EPR) signals of Mn<sup>2+</sup>. The EPR spectrum of a high spin Mn<sup>2+</sup> showed the characteristic six hyperfine lines whose intensity correlated with Mn treatments and, consequently, leaf concentrations of Mn. The results presented here demonstrated that Si supply increased the Mn binding properties of leaf cell walls in cucumber plants with simultaneously decreasing of the free apoplastic Mn<sup>2+</sup>, indicating the protective role of Si in smothering harmful (inter)actions of free Mn<sup>2+</sup> within plant tissue. Taken together, the leaf apoplast plays the central role in modulation of Mn toxicity and Si enhanced Mn tolerance in cucumber.</p><p>This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200053).</p>


2021 ◽  
Author(s):  
Ximena Cibils-Stewart ◽  
Wade J Mace ◽  
Alison J Popay ◽  
Susan E Hartley ◽  
Fernando A Lattanzi ◽  
...  

<p>Grasses accumulate large concentrations of silicon (Si) which alleviates a range of stresses including defence against herbivores. Likewise, grasses symbiotically associate with foliar <em>Epichloë-</em>fungal endophytes which provide herbivore defence, mainly via the production of alkaloids. Some <em>Epichloë</em>-endophytes increase foliar Si concentrations, particularly in tall fescue <em>(Festuca arundinacea</em>) but also in perennial ryegrass (<em>Lolium perenne</em>); it is unknown whether this impacts herbivores. Likewise, while Si is primarily a physical defence against herbivores, it can also affect defensive secondary metabolites; Si supply might therefore also affect alkaloids produced by <em>Epichloë</em>-endophytes, however, this remains untested. We grew tall fescue and perennial ryegrass in a factorial combination with or without Si supplementation, in the absence or presence of a chewing herbivore; <em>Helicoverpa armigera</em>. Grasses were associated with four different<em> Epichloë</em>-endophyte strains (tall fescue: AR584; perennial ryegrass: AR37, AR1, or wild type) or as <em>Epichloë</em>-free controls. Specifically, we assessed how Si supply and <em>Epichloë</em>-endophyte presence impacts plant growth and chemistry, and how their interaction with herbivory affects foliar Si concentrations and alkaloid production. Subsequently, their effects on <em>H. armigera</em> relative growth rates (RGR) were evaluated. In Fescue, the AR584-endophyte increased constitutive (herbivore-free) and induced (herbivore-inoculated) silicon concentrations when Si was supplied. In perennial ryegrass, AR37-endophyte increased constitutive and induced silicon concentration, meanwhile, AR1-endophyte increased constitutive levels only. Si supply and herbivory did not affect alkaloids produced by AR584- or AR1/Wt-endophyte in tall fescue and perennial ryegrass, respectively. However, Si suppressed herbivore-induced production of alkaloids in the AR37-endophyte perennial ryegrass association. Si was a more effective defence in tall fescue than perennial ryegrass, significantly reducing H. armigera RGR. Our results suggest that Si reduced herbivore performance to such an extent in tall fescue that it was operating at maximum effect and endophyte-mediated increases in Si concentration made no further difference. Si had a more modest impact on herbivores in perennial ryegrass, potentially linked to silicon decreasing herbivore feeding and thus, suppressing herbivore-induced alkaloids. We provide novel evidence that increased Si concentrations in some cases interact with endophyte-produced chemical defences, which could ultimately impact plant resistance to herbivores. <strong>  </strong></p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Flor E. Acevedo ◽  
Michelle Peiffer ◽  
Swayamjit Ray ◽  
Ching-Wen Tan ◽  
Gary W. Felton

Silicon (Si) is a beneficial mineral that enhances plant protection against abiotic and biotic stresses, including insect herbivores. Si increases mechanical and biochemical defenses in a variety of plant species. However, the use of Si in agriculture remains poorly adopted despite its widely documented benefits in plant health. In this study, we tested the effect of Si supplementation on the induction of plant resistance against a chewing herbivore in crops with differential ability to accumulate this element. Our model system comprised the generalist herbivore fall armyworm (FAW) Spodoptera frugiperda and three economically important plant species with differential ability to uptake silicon: tomato (non-Si accumulator), soybean, and maize (Si-accumulators). We investigated the effects of Si supply and insect herbivory on the induction of physical and biochemical plant defenses, and herbivore growth using potted plants in greenhouse conditions. Herbivory and Si supply increased peroxidase (POX) activity and trichome density in tomato, and the concentration of phenolics in soybean. Si supplementation increased leaf Si concentration in all plants. Previous herbivory affected FAW larval weight gain in all plants tested, and the Si treatment further reduced weight gain of larvae fed on Si accumulator plants. Notably, our results strongly suggest that non-glandular trichomes are important reservoirs of Si in maize and may increase plant resistance to chewing herbivores. We conclude that Si offers transient resistance to FAW in soybean, and a more lasting resistance in maize. Si supply is a promising strategy in management programs of chewing herbivores in Si-accumulator plants.


2020 ◽  
Vol 16 (11) ◽  
pp. 20200608
Author(s):  
Fikadu N. Biru ◽  
Christopher I. Cazzonelli ◽  
Rivka Elbaum ◽  
Scott N. Johnson

Grasses are hyper-accumulators of silicon (Si), which they acquire from the soil and deposit in tissues to resist environmental stresses. Given the high metabolic costs of herbivore defensive chemicals and structural constituents (e.g. cellulose), grasses may substitute Si for these components when carbon is limited. Indeed, high Si uptake grasses evolved in the Miocene when atmospheric CO 2 concentration was much lower than present levels. It is, however, unknown how pre-industrial CO 2 concentrations affect Si accumulation in grasses. Using Brachypodium distachyon , we hydroponically manipulated Si-supply (0.0, 0.5, 1, 1.5, 2 mM) and grew plants under Miocene (200 ppm) and Anthropocene levels of CO 2 comprising ambient (410 ppm) and elevated (640 ppm) CO 2 concentrations. We showed that regardless of Si treatments, the Miocene CO 2 levels increased foliar Si concentrations by 47% and 56% relative to plants grown under ambient and elevated CO 2 , respectively. This is owing to higher accumulation overall, but also the reallocation of Si from the roots into the shoots. Our results suggest that grasses may accumulate high Si concentrations in foliage when carbon is less available (i.e. pre-industrial CO 2 levels) but this is likely to decline under future climate change scenarios, potentially leaving grasses more susceptible to environmental stresses.


2020 ◽  
Vol 71 (21) ◽  
pp. 6744-6757 ◽  
Author(s):  
Marek Vaculík ◽  
Zuzana Lukačová ◽  
Boris Bokor ◽  
Michal Martinka ◽  
Durgesh Kumar Tripathi ◽  
...  

Abstract Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.


2020 ◽  
Vol 21 (10) ◽  
pp. 3677 ◽  
Author(s):  
Elise Réthoré ◽  
Nusrat Ali ◽  
Jean-Claude Yvin ◽  
Seyed Abdollah Hosseini

Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 554 ◽  
Author(s):  
Dragana Bosnić ◽  
Predrag Bosnić ◽  
Dragana Nikolić ◽  
Miroslav Nikolić ◽  
Jelena Samardžić

Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 µM Cu, and additional 100 µM Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation.


Sign in / Sign up

Export Citation Format

Share Document