bottom product
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 9)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 6 (2) ◽  
pp. 135-149
Author(s):  
Haris Numan Aulia ◽  
Zami Furqon

The distillation process in the debutanizer column has an essential role in separating the catalytic naphtha product from the light fraction consisting of C3 and C4 hydrocarbon components, both saturated and unsaturated. The naphtha catalytic product is used to blend gasoline because it has a high octane number. The distillation process in the column produces the bottom product of catalytic naphtha and the top product, which is the feed for the stabilizer column. In order to obtain the quantity and quality of catalytic naphtha products, it is necessary to adjust the operating conditions of the debutanizer column properly so that a product that meets the desired specifications is obtained. The method used is the short-cut calculation method which includes the calculation of the material balance and the determination of the condition of the incoming feed. Data collection is obtained from data in the industry. After calculating the material balance of the debutanizer column, the composition of the hydrocarbon constituents of the feed, the top product, and the bottom product can be seen. From the composition data, it can be seen the relationship between operating conditions and the quality of the resulting product. The higher the column operating pressure, the lighter components will be affected, increasing the C4 minus content carried to the bottom product. The higher the C4 minus content, the higher the octane number of catalytic naphtha, but this also affects the Reid Vapor Pressure (RVP) of catalytic naphtha, which also increases. Setting the operating pressure of the column should still pay attention to the product RVP limits, so that product specifications are fulfilled.ABSTRAKProses distilasi pada kolom debutanizer memiliki peran yang penting untuk memisahkan produk catalytic naphta dari fraksi ringan yang terdiri atas komponen hidrokarbon C3 dan C4, baik jenuh maupun tak jenuh. Produk catalytic naphta tersebut digunakan sebagai komponen blending gasoline karena memiliki angka oktan yang tinggi. Proses distilasi pada kolom tersebut dihasilkan produk bawah catalytic naphta dan produk atasnya yang merupakan umpan bagi kolom stabilizer. Untuk mendapatkan kuantitas dan kualitas produk catalytic naphta, maka diperlukan pengaturan kondisi operasi kolom debutanizer yang tepat sehingga diperoleh produk yang sesuai dengan spesifikasi yang diinginkan. Metode yang digunakan adalah metode perhitungan short-cut yang meliputi perhitungan material balance, dan penentuan kondisi umpan masuk. Pengumpulan data didapatkan dari data di industri. Setelah dilakukan perhitungan material balance kolom debutanizer dapat diketahui komposisi hidrokarbon penyusun umpan, produk atas, dan juga produk bawah. Dari data komposisi tersebut dapat diketahui hubungan antara kondisi operasi terhadap kualitas produk yang dihasilkan. Semakin tinggi tekanan operasi kolom, maka akan mempengaruhi komponen ringan, yakni meningkatkan kandungan C4 minus yang terikut ke produk bawah. Semakin tinggi kandungan C4 minus maka akan meningkatkan angka oktan  dari catalytic naphta, namun hal ini juga berpengaruh pada Reid Vapor Pressure (RVP) catalytic naphta yang juga meningkat. Pengaturan tekanan operasi kolom tersebut hendaknya tetap memperhatikan batasan RVP produk agar spesifikasi produk terpenuhi.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Roman Robiati

The design of a biphenyl chemical plant from benzene with a capacity of 10,000 tons/year will be built in Tuban, East Java with a land area of ​​10,010 m2. The raw material in the form of Benzene is obtained from Trans-Pacific Petrochemical Indotama (TPPI), Tuban. The factory is designed to operate continuously for 330 days, 24 hours per day, and requires 214 employees. Biphenyl preparation begins with reacting benzene (2,807.74 kg/hour) in a Pipe Flow Reactor (R-01) at a reactor temperature of 377 oC and a pressure of 2 atm. This reaction takes place with a conversion of 90% and is endothermic so that a Hitech heater is used to maintain the operating temperature. The products that come out of the reactor are biphenyl and hydrogen. It is then cooled and condensed in a Partial Condenser (CD-01) to a temperature of 151 oC. Then enter into Separator-02 (SP-02) to separate hydrogen from a mixture of benzene, toluene and biphenyl. Hydrogen in the gas phase as a result of the separtor. The bottom product in the form of benzene, toluene and biphenyl in the liquid phase is pumped and put into a distillation tower (MD-01) to purify the product with the bottom product in the form of biphenyl with a purity of 99.3%. The result of the distillation tower is benzene and its impurities are recycled as feed into the reactor with a temperature of 83 oC and a pressure of 1 atm. This factory requires Fixed Capital (FC) Rp. 34,341,856,338,- + US$ 4,195,836, Working Capital (WC) (Rp. 127,536,505,173,- + US$ 170,019), Manufacturing Cost (MC) (Rp. 254,092,040,390,- + US$ 816,090), and General Expenses (GE) (Rp. 33,990,417,539,- + US$ 81,609). Economic analysis shows the value of ROI before tax is 50.38 % and the value of ROI after tax is 32.75%. POT before tax is 1.65 years and POT after tax is 2.34 years. The BEP value is 43.11% and the SDP value is 23.75%. The interest rate in DCF for 10 years is 19% on average. Thus, from a technical and economic point of view, a biphenyl plant from benzene with a capacity of 10,000 tons/year is worthy of consideration.


2021 ◽  
Author(s):  
Niklas Schmitz ◽  
Christian F. Breitkreuz ◽  
Eckhard Stöfer ◽  
Jakob Burger ◽  
Hans Hasse

Poly(oxymethylene) dimethyl ethers (OME, H3C–O–(CH2O)n–CH3) are promising synthetic diesel fuels. Fordesigning OME production processes, a model for describing the vapor–liquid equilibrium (VLE) in mixtures of(formaldehyde + water + methanol + methylal + OME + trioxane) is needed. Building on previous work ofour group, a physico-chemical model for the VLE in these mixtures is developed in the present work. For thedevelopment and the testing of the model, experiments of different types were carried out: VLE measurements ina thin film evaporator, batch evaporation experiments in an open still, and continuous distillation experiments ina laboratory column. The model predicts the results of the distillation experiments well. It is shown that OMEwith n ≥ 3 can be separated as bottom product from mixtures of formaldehyde, water, methanol, methylal, andOME with n ≥ 2. This separation is a critical step in a novel OME production process that increases the sustainabilityof OME production.


2021 ◽  
Vol 9 (2) ◽  
pp. 23
Author(s):  
Nasrul ZA ◽  
Azhari Azhari ◽  
Rozanna Dewi ◽  
Lukman Hakim ◽  
Muthia Septiana

Aplikasi kontrol PID pada tangki pemisah (separator) diteliti dengan berbagai variasi parameter seperti Kc, Ti dan Td. Kontrol level dijadikan sebagai respon dengan beberapa variasi gangguan. Sistem pengendalian level liquid pada separator dengan tuning parameter kontroler PID dengan kondisi operasi pada PT. Perta Arun Gas dengan tujuan mendapatkan bottom product yang sesuai spesifikasi dengan melakukan trial and error juga mendapatkan nilai Kc dan Ti terbaik. Control valve memiliki 2 action yaitu direct action dan reverse action. Pengontrol PID merupakan penggabungan dari pengontrol proportional integral derivative (PID) yang bertujuan untuk mempercepat reaksi sebuah sistem, menghilangkan offset. Tuning range Kc, Ti yang digunakan adalah Kc= 2-20 dan Ti 5-10 menit yang selanjutnya akan di run menggunakan response surface methodology dengan meninjau waktu PV (process variable) mendekati SP (setpoint) dan opening valve. Metode respon surface methodology digunakan untuk melihat pengaruh variabel terhadap suatu variabel respon dan untuk mengoptimalkan variabel respon tersebut. Optimasi waktu tercepat saat mengatasi gangguan dengan variasi level adalah tuning parameter Kc=17,18 dan Ti=5,6 dengan waktu 0,3 menit dan bukaan OP 26,9%. Waktu terlama saat mengatasi gangguan adalah pada Kc=4,64, Ti=9,27 menit, time=0,61 menit dengan OP=10,6%.Key words:    Control dynamic, Control PID, Response Surface Methodology.


2020 ◽  
pp. 107072
Author(s):  
Iratxe Niño-Adan ◽  
Itziar Landa-Torres ◽  
Diana Manjarres ◽  
Eva Portillo

2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Kanubhai Parmar ◽  
Sukanta Dash ◽  
Sunil Patil ◽  
Garimella Padmavathi

AbstractAt condensate stripper of a cracker plant with design control philosophy for composition control pant was facing operational difficulty. Due to disturbance in operating parameter column was becoming unstable and product was getting offspec w.r.t. desired purity. One of the applications of dynamic simulation is to troubleshoot the challenges related to control philosophy in practical application. Since steady-state simulation models cannot predict behavior with respect to time, initially steady state model and finally a dynamic model was developed in Aspen HYSYS. The model is used to study the process behavior for existing control philosophy and proposed philosophy. To avoid column puncture and without waiting for plant shut down the existing Temperature Indicator (TI) considered as Temperature Indicator Controller (TIC) for the study. A new control philosophy was developed based on the response of variables after disturbances in feed rate and composition. The revised control philosophy has been implemented and is now working satisfactorily, providing stabilized operation of the column with consistent bottom product quality. This has helped to reduce the loss of C2s in the bottom stream by about 700 ppm, for savings of about $100,000 USD per year.


2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Nur Ihda Farikhatin Nisa ◽  
Achmad Aminudin
Keyword(s):  

<p>Bioetanol merupakan salah satu energi terbarukan yang dapat diproduksi dari berbagai bahan seperti sorgum, tebu atau bahkan substrat dari limbah industri makanan. Pembuatan bioetanol melibatkan proses distilasi. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh lamanya waktu distilasi etanol-air terhadap konsentrasi <em>overhead product </em>dan <em>bottom product</em> yang keluar dari kolom distilasi. Metode dalam penelitian ini terdiri dari tahap persiapan, distilasi dan tahap analisa. Konsentrasi etanol ditentukan melalui pengukuran indeks bias menggunakan refraktometer. Dari hasil penelitian yang telah dilakukan dapat disimpulkan bahwa semakin besar indeks bias larutan etanol maka semakin besar konsentrasi larutan. Semakin lama waktu distilasi maka konsentrasi <em>overhead product</em> semakin besar. Hal ini berbanding terbalik dengan konsentrasi larutan di <em>bottom product</em> yang semakin kecil dengan bertambahnya waktu distilasi.</p>


2019 ◽  
Vol 8 (1) ◽  
pp. 83
Author(s):  
Nasrul ZA ◽  
Azhari Azhari ◽  
Rozanna Dewi ◽  
Lukman Hakim ◽  
Muthia Septiana

Aplikasi kontrol PID pada tangki pemisah (separator) diteliti dengan berbagai variasi parameter seperti Kc, Ti dan Td. Kontrol level dijadikan sebagai respon dengan beberapa variasi gangguan. Sistem pengendalian level liquid pada separator dengan tuning parameter kontroler PID dengan kondisi operasi pada PT. Perta Arun Gas dengan tujuan mendapatkan bottom product yang sesuai spesifikasi dengan melakukan trial and error juga mendapatkan nilai Kc dan Ti terbaik. Control valve memiliki 2 action yaitu direct action dan reverse action. Pengontrol PID merupakan penggabungan dari pengontrol proportional integral derivative (PID) yang bertujuan untuk mempercepat reaksi sebuah sistem, menghilangkan offset. Tuning range Kc, Ti yang digunakan adalah Kc= 2-20 dan Ti 5-10 menit yang selanjutnya akan di run menggunakan response surface methodology dengan meninjau waktu PV (process variable) mendekati SP (setpoint) dan opening valve. Metode respon surface methodology digunakan untuk melihat pengaruh variabel terhadap suatu variabel respon dan untuk mengoptimalkan variabel respon tersebut. Optimasi waktu tercepat saat mengatasi gangguan dengan variasi level adalah tuning parameter Kc=17,18 dan Ti=5,6 dengan waktu 0,3 menit dan bukaan OP 26,9%. Waktu terlama saat mengatasi gangguan adalah pada Kc=4,64, Ti=9,27 menit, time=0,61 menit dengan OP=10,6%.Kata Kunci: Control dynamic, Kontrol PID, Response Surface Methodology


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Suharto Suharto ◽  

Abstract Fractionation column in PT X is a unit of equipment that aims to separate the gas component wherein the composition is primarily a mixture of propylene and propane C3 to C4 mixture. Based on the calculation of the operating data obtained results C3 on product purity level of 98.92% upper and purity levels of C4 in the bottom product of 86.27%. From the correlation analysis of process variables on the dependent variable that is used as a parameter optimization are purity levels of C3 in the top products and product purity C4 at the bottom of the results showed that the most significant process variables influence is a bottom temperature and the amount of reflux flow. Of the two variables are then conducted regression analysis to optimize the parameters to obtain the objective function. Based on the results of the objective function obtained optimal condition is a bottom temperature of 108,04oC and reflux amount of 61.44 tons/hour. Then the results obtained purity levels of C3 in the upper part of the product is 99.99% and purity of C4 at the bottom of the product by 97.00%. Of the economic calculation under optimal conditions fractionation column will be obtained potential profit of Rp 44,346,666 /day. Keywords: Optimization, Performance, Fractionation


2018 ◽  
Vol 4 (3) ◽  
pp. 279
Author(s):  
Diyah Fadjarwaty ◽  
Herri Susanto

One of possible utilizations of abundant agricultural solid waste such as palm oil empty fruit bunches is the conversion furfural via acid hydrolysis and followed by azeotrope distillation. With the aim to reduce the consumption of H2SO4 in the furfural production from oil palm empty fruit bunches, acid hydrolysis was accomplished using the spent acid left as the bottom product of distillation during furfural recovery. The use of spent acid could reduce the need of H2SO4 from 42 at the first cycle to 17 mL/kg at the second cycle, while the need of H2SO4 in the third cycle was 29 mL/kg. Furfural yields in these cycles were up to 16.8, 16.1 and 10.7 g/kg respectively. The use of spent acid at the fourth cycle was not effective anymore. Keywords: Oil Palm Empty Fruit Bunches, Furfural, Acid Hydrolysis AbstrakSalah satu pemanfaatan biomassa limbah padat pertanian dan perkebunan adalah produksi furfural melalui proses hidrolisis dan distilasi azeotrop. Hidrolisis TKS (tandan kosong sawit) dilaksanakan dalam suasana asam yang umumnya dengan H2SO4 sebagai katalis. Pada operasi distilasi pengambilan furfural, H2SO4 bekas hidrolisis tertinggal bersama air sebagai produk bawah. Untuk mengurangi konsumsi H2SO4 dalam hidrolisis, produk bawah distilasi ini terbukti dapat digunakan sebagai cairan hidrolisis berulang sampai 3 kali. Pada hidrolisis dengan cairan segar, kebutuhan H2SO4 (98% teknis) adalah 42 mL/kg bahan baku. Tetapi pada hidrolisis dengan produk bawah ulangan pertama, kebutuhan H2SO4 tambahan untuk menyesuaikan pH cairan pemasak hanya 17 mL/kg TKS kering. Pada hidrolisis dengan produk bawah ulangan kedua, kebutuhan H2SO4 29 mL/kg. Perolehan furfural dari ketiga ulangan hidrolisis berturut-turut adalah 16,8; 16,1 dan 10,7 g/kg. Penggunaan produk bawah distilasi untuk hidrolisis ulangan keempat memberi hasil yang kurang memuaskan.Kata Kunci: TKS, Furfural, Hidrolisis Asam


Sign in / Sign up

Export Citation Format

Share Document