heterogeneous node
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Xing-Li Jing ◽  
Mao-Bin Hu ◽  
Cong-Ling Shi ◽  
Xiang Ling

The study of traffic dynamics on couple networks is important for the design and management of many real systems. In this paper, an efficient routing strategy on coupled spatial networks is proposed, considering both traffic characteristics and network topology information. With the routing strategy, the traffic capacity can be greatly improved in both scenarios of identical and heterogeneous node capacity allocation. Heterogeneous allocation strategy of node delivery capacity performs better than identical capacity allocation strategy. The study can help to improve the performance of real-world multi-modal traffic systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Max Falkenberg

AbstractNode copying is an important mechanism for network formation, yet most models assume uniform copying rules. Motivated by observations of heterogeneous triadic closure in real networks, we introduce the concept of a hidden network model—a generative two-layer model in which an observed network evolves according to the structure of an underlying hidden layer—and apply the framework to a model of heterogeneous copying. Framed in a social context, these two layers represent a node’s inner social circle, and wider social circle, such that the model can bias copying probabilities towards, or against, a node’s inner circle of friends. Comparing the case of extreme inner circle bias to an equivalent model with uniform copying, we find that heterogeneous copying suppresses the power-law degree distributions commonly seen in copying models, and results in networks with much higher clustering than even the most optimum scenario for uniform copying. Similarly large clustering values are found in real collaboration networks, lending empirical support to the mechanism.


2021 ◽  
Vol 7 (28) ◽  
pp. eabh1303
Author(s):  
Philip S. Chodrow ◽  
Nate Veldt ◽  
Austin R. Benson

Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.


Author(s):  
S. Moore ◽  
T. Rogers

Having knowledge of the contact network over which an infection is spreading opens the possibility of making individualized predictions for the likelihood of different nodes to become infected. When multiple infective strains attempt to spread simultaneously we may further ask which strain, or strains, are most likely to infect a particular node. In this article we investigate the heterogeneity in likely outcomes for different nodes in two models of multi-type epidemic spreading processes. For models allowing co-infection we derive message-passing equations whose solution captures how the likelihood of a given node receiving a particular infection depends on both the position of the node in the network and the interaction between the infection types. For models of competing epidemics in which co-infection is impossible, a more complicated analysis leads to the simpler result that node vulnerability factorizes into a contribution from the network topology and a contribution from the infection parameters.


Author(s):  
Mohammed Al Farhan ◽  
Ahmad Abdelfattah ◽  
Stanimire Tomov ◽  
Mark Gates ◽  
Dalal Sukkari ◽  
...  

With the acquisition and widespread use of more resources that rely on accelerator/wide vector–based computing, there has been a strong demand for science and engineering applications to take advantage of these latest assets. This, however, has been extremely challenging due to the diversity of systems to support their extreme concurrency, complex memory hierarchies, costly data movement, and heterogeneous node architectures. To address these challenges, we design a programming model and describe its ease of use in the development of a new MAGMA Templates library that delivers high-performance scalable linear algebra portable on current and emerging architectures. MAGMA Templates derives its performance and portability by (1) building on existing state-of-the-art linear algebra libraries, like MAGMA, SLATE, Trilinos, and vendor-optimized math libraries, and (2) providing access (seamlessly to the users) to the latest algorithms and architecture-specific optimizations through a single, easy-to-use C++-based API.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
O. Smith ◽  
J. Crowe ◽  
E. Farcot ◽  
R. D. O'Dea ◽  
K. I. Hopcraft

Sign in / Sign up

Export Citation Format

Share Document