scholarly journals PLK4-phosphorylated NEDD1 facilitates cartwheel assembly and centriole biogenesis initiations

2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Wangfei Chi ◽  
Gang Wang ◽  
Guangwei Xin ◽  
Qing Jiang ◽  
Chuanmao Zhang

Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.

2010 ◽  
Vol 21 (4) ◽  
pp. 547-561 ◽  
Author(s):  
James E. Sillibourne ◽  
Frederik Tack ◽  
Nele Vloemans ◽  
An Boeckx ◽  
Sathiesan Thambirajah ◽  
...  

Centrosome duplication occurs once every cell cycle in a strictly controlled manner. Polo-like kinase 4 (PLK4) is a key regulator of this process whose kinase activity is essential for centriole duplication. Here, we show that PLK4 autophosphorylation of serine S305 is a consequence of kinase activation and enables the active fraction to be identified in the cell. Active PLK4 is detectable on the replicating mother centriole in G1/S, with the proportion of active kinase increasing through interphase to reach a maximum in mitosis. Activation of PLK4 at the replicating daughter centriole is delayed until G2, but a level equivalent to the replicating mother centriole is achieved in M phase. Active PLK4 is regulated by the proteasome, because either proteasome inhibition or mutation of the degron motif of PLK4 results in the accumulation of S305-phosphorylated PLK4. Autophosphorylation probably plays a role in the process of centriole duplication, because mimicking S305 phosphorylation enhances the ability of overexpressed PLK4 to induce centriole amplification. Importantly, we show that S305-phosphorylated PLK4 is specifically sequestered at the centrosome contrary to the nonphosphorylated form. These data suggest that PLK4 activity is restricted to the centrosome to prevent aberrant centriole assembly and sustained kinase activity is required for centriole duplication.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olivier Mercey ◽  
Adel Al Jord ◽  
Philippe Rostaing ◽  
Alexia Mahuzier ◽  
Aurélien Fortoul ◽  
...  

Abstract Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.


2018 ◽  
Author(s):  
Olivier Mercey ◽  
Adel Al Jord ◽  
Philippe Rostaing ◽  
Alexia Mahuzier ◽  
Aurélien Fortoul ◽  
...  

AbstractCentrioles are essential microtubule-based organelles organizing cilia and centrosomes. Their mode of biogenesis is semi-conservative: each pre-existing centriole scaffolds the formation of a new one, a process coordinated with the cell cycle. By contrast, multiciliated progenitors with two centrosomal centrioles massively amplify centrioles to support the nucleation of hundred of motile cilia and transport vital fluids. This occurs through cell type-specific organelles called deuterosomes, composed of centrosome-related elements, and is regulated by the cell cycle machinery. Deuterosome-dependent centriole amplification was proposed for decades to occur de novo, i.e. independently from pre-existing centrioles. Challenging this hypothesis, we recently reported an accumulation of procentriole and deuterosome precursors at the centrosomal daughter centriole during centriole amplification in brain multiciliated cells. Here we further investigate the relationship between the centrosome and the dynamic of centriole amplification by (i) characterizing the centrosome behavior during the centriole amplification dynamics and (ii) assessing the dynamics of amplification in centrosome-depleted cells. Surprisingly, although our data strengthen the centrosomal origin of amplified centrioles, we show limited consequences in deuterosome/centriole number when we deplete centrosomal centrioles. Interestingly, in absence of centrosomal centrioles, procentrioles are still amplified sequentially from a single focal region, characterized by microtubule convergence and pericentriolar material (PCM) self-assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.


2016 ◽  
Author(s):  
Jeffrey C. Medley ◽  
Megan M. Kabara ◽  
Michael D. Stubenvoll ◽  
Lauren E. DeMeyer ◽  
Mi Hye Song

Summary statementThe conserved protein kinase CK2 negatively regulates centrosome assembly and is required for proper cell cycle progression and cytokinesis in early C. elegans embryos.AbstractCentrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein Kinase II (CK2) in early C. elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.


Open Biology ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200399
Author(s):  
Nicole A. Hall ◽  
Heidi Hehnly

The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.


2005 ◽  
Vol 171 (3) ◽  
pp. 437-445 ◽  
Author(s):  
Chaozhong Zou ◽  
Jun Li ◽  
Yujie Bai ◽  
William T. Gunning ◽  
David E. Wazer ◽  
...  

In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.


2012 ◽  
Vol 197 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Balca R. Mardin ◽  
Elmar Schiebel

The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.


1999 ◽  
Vol 147 (7) ◽  
pp. 1371-1378 ◽  
Author(s):  
Smruti J. Vidwans ◽  
Mei Lie Wong ◽  
Patrick H. O'Farrell

Centrosome duplication is marked by discrete changes in centriole structure that occur in lockstep with cell cycle transitions. We show that mitotic regulators govern steps in centriole replication in Drosophila embryos. Cdc25string, the expression of which initiates mitosis, is required for completion of daughter centriole assembly. Cdc20fizzy, which is required for the metaphase-anaphase transition, is required for timely disengagement of mother and daughter centrioles. Stabilization of mitotic cyclins, which prevents exit from mitosis, blocks assembly of new daughter centrioles. Common regulation of the nuclear and centrosome cycles by mitotic regulators may ensure precise duplication of the centrosome.


2010 ◽  
Vol 188 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Andrew J. Holland ◽  
Weijie Lan ◽  
Sherry Niessen ◽  
Heather Hoover ◽  
Don W. Cleveland

Accurate control of the number of centrosomes, the major microtubule-organizing centers of animal cells, is critical for the maintenance of genome integrity. Abnormalities in centrosome number can promote errors in spindle formation that lead to subsequent chromosome missegregation, and extra centrosomes are found in many cancers. Centrosomes are comprised of a pair of centrioles surrounded by amorphous pericentriolar material, and centrosome duplication is controlled by centriole replication. Polo-like kinase 4 (Plk4) plays a key role in initiating centriole duplication, and overexpression of Plk4 promotes centriole overduplication and the formation of extra centrosomes. Using chemical genetics, we show that kinase-active Plk4 is inherently unstable and targeted for degradation. Plk4 is shown to multiply self-phosphorylate within a 24–amino acid phosphodegron. Phosphorylation of multiple sites is required for Plk4 instability, indicating a requirement for a threshold level of Plk4 kinase activity to promote its own destruction. We propose that kinase-mediated, autoregulated instability of Plk4 self-limits Plk4 activity so as to prevent centrosome amplification.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Paul T Conduit ◽  
Alan Wainman ◽  
Zsofia A Novak ◽  
Timothy T Weil ◽  
Jordan W Raff

Centrosomes have many important functions and comprise a ‘mother’ and ‘daughter’ centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic ‘S-CAP’ complexes that contain the centriole protein Sas-4. In a previous paper (<xref ref-type="bibr" rid="bib5">Conduit et al., 2014b</xref>) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes.


Sign in / Sign up

Export Citation Format

Share Document