scholarly journals The Clostridioides difficile species problem: global phylogenomic analysis uncovers three ancient, toxigenic, genomospecies

Author(s):  
Daniel R. Knight ◽  
Korakrit Imwattana ◽  
Brian Kullin ◽  
Enzo Guerrero-Araya ◽  
Daniel Paredes-Sabja ◽  
...  

AbstractClostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work impacts the diagnosis of CDI worldwide.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel R Knight ◽  
Korakrit Imwattana ◽  
Brian Kullin ◽  
Enzo Guerrero-Araya ◽  
Daniel Paredes-Sabja ◽  
...  

Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 714
Author(s):  
Supapit Wongkuna ◽  
Tavan Janvilisri ◽  
Matthew Phanchana ◽  
Phurt Harnvoravongchai ◽  
Amornrat Aroonnual ◽  
...  

Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A−B+CDT− (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT− (8%), five A−B+CDT+ (19%), seven A−B+CDT− (27%), and six A−B−CDT− (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 μg/mL) and chloramphenicol (MICs ≥ 64 μg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.


2019 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Leen de Jong ◽  
Annemieke H. Friggen ◽  
Wiep Klaas Smits ◽  
Jeroen Corver

AbstractClostridioides difficile is an anaerobic gram-positive bacterium that can can produce the large clostridial toxins, Toxin A and Toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, that positively regulates toxin gene expression, and TcdC, a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor, however, several studies failed to show an association between tcdC genotype and toxin production. Consequently, TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the OB-fold domain present at the C-terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the C-terminal OB-fold.In this study we aimed to obtain topological information on the C-terminus of TcdC. Using Scanning Cysteine Accessibility Mutagenesis and a HiBiT-based system, we demonstrate that the C-terminus of TcdC is located extracellularly. The extracellular location of TcdC is not compatible with direct binding of the OB-fold domain to intracellular nucleic acid or protein targets, and suggests a mechanism of action that is different from characterized anti-sigma factors.ImportanceTranscription of the C. difficile large clostrididial toxins (TcdA and TcdB) is directed by the sigma factor TcdR. TcdC has been implicated as a negative regulator, possible acting as an anti-sigma factor.Activity of TcdC has been mapped to its C-terminal OB fold domain. TcdC is anchored in the bacterial membrane, through its hydrophobic N-terminus and acting as an anti-sigma factor would require cytoplasmic localization of the C-terminal domain.Remarkably, topology predictions for TcdC suggest the N-terminus to be membrane localized and the C-terminal domain to be located extracellularly. Using independent assays, we show that the C-terminus of TcdC indeed is located in the extracellular environment, which is incompatible with its proposed role as anti-sigma factor in toxin regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Duolong Zhu ◽  
Shaohui Wang ◽  
Xingmin Sun

Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism “FliW-CsrA-Hag.” In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of “FliW-CsrA-Hag” switch coregulation mechanism reported in B. subtilis, our data also suggest that “FliW-CsrA-fliC/FliC” can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.


2015 ◽  
Vol 112 (33) ◽  
pp. 10200-10207 ◽  
Author(s):  
Jan Janouškovec ◽  
Denis V. Tikhonenkov ◽  
Fabien Burki ◽  
Alexis T. Howe ◽  
Martin Kolísko ◽  
...  

Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.


2021 ◽  
pp. 104063872110475
Author(s):  
K. Gary Magdesian ◽  
Samantha Barnum ◽  
Nicola Pusterla

Clostridium perfringens and Clostridioides difficile cause significant morbidity and mortality in foals. Antemortem diagnosis of C. perfringens infection has been complicated by a paucity of tests available for toxin detection. Fecal PCR panels have assays for a variety of C. perfringens toxin gene sequences as well as for several other foal gastrointestinal pathogens. We evaluated results of a comprehensive fecal diarrhea PCR panel in 28 foals that had been presented to a referral hospital because of diarrhea. Sixteen (57%) foals were positive for C. perfringens and/or C. difficile toxin gene sequences on fecal PCR, including 3 foals positive for NetF toxin. These foals were younger ( p = 0.0029) and had higher hematocrits ( p = 0.0087), hemoglobin ( p = 0.0067), and red blood cell concentrations ( p = 0.028) than foals with diarrhea that tested negative for clostridial toxins. The foals had lower total protein concentrations ( p = 0.045) and were more likely to have band neutrophils on a CBC ( p = 0.013; OR: 16.2). All 3 foals with NetF toxin gene sequences detected in feces survived to discharge, indicating that diarrhea caused by NetF toxigenic C. perfringens isolates is not uniformly fatal.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S842-S842
Author(s):  
Daniel Friedman ◽  
Karen Zurek ◽  
Leyla Asadi ◽  
Mao-Cheng Lee ◽  
Holly Hoang

Abstract Background Clostridioides difficile infection (CDI) is an important cause of morbidity and mortality and management continues to evolve. For laboratories that diagnose by detection of toxin gene, it is unclear whether reporting toxin production is additive to patient care. Furthermore, is there still a role for metronidazole (MNZ) given treatment guidelines now recommend vancomycin (VAN) as first-line therapy for non-severe cases? We analyzed cases of CDI in our hospital to assess outcomes of patients on MNZ vs. VAN and with or without toxin production. Methods A retrospective chart review of inpatients with CDI (based on detection of C. difficile toxin gene by PCR) was conducted between November 2017 and August 2018. Comparison of demographics and outcomes was performed in a) cases that were toxin-positive by enzyme immunoassay vs. negative and b) non-severe cases initially managed with MNZ vs. VAN. Results 76 patients were included (46 toxin-positive, 30 toxin-negative). Toxin-positive patients were older (mean age 77 vs. 62, p = 0.002) but had similar disease severity and initial treatment. A CDI recurrence occurred in 22% vs 0% in the toxin-positive cases (p = 0.006). Any CDI-related complication occurred in 23% of toxin-negative and 35% of toxin-positive cases (ns). After adjusting for toxin-status, age, and severity, the odds ratio of the composite outcome of any complication with toxin-positive CDI was not significant (OR 1.45 95% CI 0.45 -4.6, p = 0.52). There were 37 (49%) patients with non-severe CDI (27 MNZ, 10 VAN). Patients treated with VAN had higher stooling/day (6.3 vs 4.4, p = 0.04) and heart rate (p = 0.02). Initial MNZ use was associated with treatment escalation in 48% of cases compared with 10% in those treated with VAN alone (p = 0.03). CDI-associated mortality was higher in the VAN group (2/10 vs 0/27, p = 0.017). The rate of other complications was not significantly different. Conclusion Although no difference in the composite outcome of any CDI-related complication was detected between toxin positive vs negative patients, toxin-positivity may predict patients at risk for subsequent recurrence. Patients with non-severe CDI did not have increased risk of complications when managed with MNZ; however, they were more likely to require treatment escalation. Disclosures All authors: No reported disclosures.


2018 ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genes,tcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multi-species chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside of the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. In addition, the ability for RstA to bind DNA and repress toxin production requires the species-specific domain predicted to respond to small quorum-sensing peptides. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct sensing mechanism.


Sign in / Sign up

Export Citation Format

Share Document