scholarly journals Improving Catalytic Activity in the Electrochemical Separation of CO2 Using Membrane Electrode Assemblies

Author(s):  
Nicholas Schwartz ◽  
Jason Harrington ◽  
Kirk J Ziegler ◽  
Philip Cox

Abstract The direct electrochemically driven separation of CO2 from a humidified N2, O2, and CO2 gas mixture was conducted using an asymmetric membrane electrode assembly (MEA). The MEA was fabricated using a screen-printed ionomer bound Pt cathode, an anion exchange membrane (AEM), and ionomer bound IrO2 anode. Electrocatalyst materials were physically and chemically characterized prior to inclusion within the electrode. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) measurements using a rotating disk electrode (RDE) were used to quantify the catalytic activity and determine the effects of the catalyst-to-ionomer ratio. Catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface analysis, and (dynamic light scattering) DLS to evaluate catalyst structure, active surface area, and determine the particle size and bulk particle size distribution (PSD). The electrocatalyst layer of the electrodes were fabricated by screen printing a uniformly dispersed mixture of catalyst, dissolved anionic ionomer, and a solvent system onto an electrode supporting gas diffusion layer (GDL). Pt IrO2 MEAs were fabricated and current-voltage relationships were determined using constant-current measurements over a range of applied current densities and flow rates. Baseline reaction kinetics for CO2 separation were established with a standard set of Pt-IrO2 MEAs.

2020 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Johanna Schröder ◽  
Jacob J. K. Kirkensgaard ◽  
Matthias Arenz

In this work, we investigate the stability of four different types of Pt/C fuel cell catalysts upon applying accelerated degradation tests (ADTs) in a gas diffusion electrode (GDE) setup equipped with an anion exchange membrane (AEM). In contrast to previous investigations exposing the catalysts to liquid electrolyte, the GDE setup provides a realistic three-phase boundary of the reactant gas, catalyst and ionomer which enables reactant transport rates close to real fuel cells. Therefore, the GDE setup mimics the degradation of the catalyst under more realistic reaction conditions as compared to conventional electrochemical cells. Combining the determination of the loss in electrochemically active surface area (ECSA) of the Pt/C catalysts via CO stripping measurements with the change in particle size distribution determined by small-angle X-ray scattering (SAXS) measurements, we demonstrate that i) the degradation mechanism depends on the investigated Pt/C catalyst and might indeed be different to the one observed in conventional electrochemical cells, ii) degradation is increased in an oxygen gas atmosphere (as compared to an inert atmosphere), and iii) the observed degradation mechanism depends on the mesoscopic environment of the active phase. The measurements indicate an increased particle growth if small and large particles are immobilized next to each other on the same carbon support flakes as compared to a simple mix of two catalysts with small and large particles, respectively.


2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2019 ◽  
Vol 25 (6) ◽  
pp. 1394-1400 ◽  
Author(s):  
Sumit Majumder ◽  
Sangam Banerjee

AbstractHere, a well crystalline 3D flower-like structured MoS2 (~420 nm) has been successfully synthesized on a large scale by a simple hydrothermal technique. The evolution of morphology in the formation process has also been investigated. The crystallinity, purity, and morphology of the sample are characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, fieldemission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The FESEM and TEM images reveal that the sample exhibits a uniform 3D flower-like microsphere shape with folded nanosheets, which are stretched out along the edge of the microsphere. The electrochemical performance of the sample has been investigated by cyclic voltammogram, galvanostatic charge–discharge, and electrochemical impedance spectroscopy studies. The results of the electrochemical analysis suggest that the material delivers a maximum specific capacitance (Csp) of 350 F/g at a discharge current density of 0.25 A/g with energy density 17.5 Wh/kg. It also exhibits good capability and excellent cyclic stability (94% capacity retention after 1,000 cycles in 1 A/g) owing to the coupling effect of electrical conductivity with the interesting morphology and larger active surface area. Hence, the sample may be used as a promising electrode material for high-performance energy storage devices.


Surfaces ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 69-77
Author(s):  
Alessandro Zana ◽  
Gustav Wiberg ◽  
Matthias Arenz

There have been several reports concerning the performance improving properties of additives, such as polyvinylidene difluoride (PVDF), to the membrane or electrocatalyst layer of proton exchange membrane fuel cells (PEMFC). However, it is not clear if the observed performance enhancement is due to kinetic, mass transport, or anion blocking effects of the PVDF. In a previous investigation using a thin-film rotating disk electrode (RDE) approach (of decreased complexity as compared to membrane electrode assembly (MEA) tests), a performance increase for the oxygen reduction reaction (ORR) could be confirmed. However, even in RDE measurements, reactant mass transport in the catalyst layer cannot be neglected. Therefore, in the present study, the influence of PVDF is re-examined by coating polycrystalline bulk Pt electrodes by PVDF and measuring ORR activity. The results on polycrystalline bulk Pt indicate that the effects of PVDF on the reaction kinetics and anion adsorption are limited, and that the observed performance increase on high surface area Pt/C most likely is due to an erroneous estimation of the electrochemical active surface area (ECSA) from CO stripping and Hupd.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Javier Parrondo ◽  
Chitturi Venkateswara Rao ◽  
Sundara L. Ghatty ◽  
B. Rambabu

Acid-doped poly(2,2′-m-phenylene-5,5′-bibenzimidazole) membranes have been prepared and used to assemble membrane electrode assemblies (MEAs) with various contents of PBI (1–30 wt.%) in the gas diffusion electrode (GDE). The MEAs were tested in the temperature range of140∘C–200∘C showing that the PBI content in the electrocatalyst layer influences strongly the electrochemical performance of the fuel cell. The MEAs were assembled using polyphosphoric acid doped PBI membranes having conductivities of 0.1 Scm−1at180∘C. The ionic resistance of the cathode decreased from 0.29 to 0.14 Ohm-cm2(180∘C) when the content of PBI is varied from 1 to 10 wt.%. Similarly, the mass transfer resistance or Warburg impedance increased 2.5 times, reaching values of 6 Ohm-cm2. 5 wt.% PBI-based MEA showed the best performance. The electrochemical impedance measurements were in good agreement with the fuel cell polarization curves obtained, and the optimum performance was obtained when overall resistance was minimal.


2021 ◽  
Author(s):  
Sven Nösberger ◽  
Jia Du ◽  
Jonathan Quinson ◽  
Etienne Berner ◽  
Alessandro Zana ◽  
...  

Gas diffusion electrode (GDE) setups have been recently introduced as a new experimental approach to test the performance of fuel cell catalysts. As compared to the state-of-the-art in fundamental research, i.e., rotating disk electrode (RDE) measurements, GDE measurements offer several advantages. Most importantly mass transport limitations, inherent to RDE measurements are avoided. In a GDE setup the reactant, e.g., oxygen gas, is not dissolved into a liquid electrolyte but distributed through a gas diffusion layer (GDL), as it is actually the case in fuel cells. Consequently, much higher current densities can be achieved, and the catalysts can be studied in a wider and more relevant potential range. Furthermore, direct contact to a liquid electrolyte can be avoided and elevated temperatures can be employed in a straight-forward manner. However, the use of GDE setups also comes with some challenges. The determined performance is not strictly related to the catalyst itself (intrinsic activity), but also to the quality of the catalyst film preparation. Therefore, it might be even more important than in RDE testing to develop standardized procedures to prepare catalysts inks and films that can be reproduced effortlessly in research laboratories for fundamental and applied experimentation. To develop such standardized testing protocols, we present a comparative RDE – GDE study, where we investigate several commercial standard Pt/C fuel cell catalysts with respect to the oxygen reduction reaction (ORR). The study highlights the strengths of the GDE approach as an intermediate “testing step” between RDE and membrane electrode assembly (MEA) tests when developing new fuel catalysts.


Author(s):  
Morio Tomizawa ◽  
Keisuke Nagato ◽  
Kohei Nagai ◽  
Akihisa Tanaka ◽  
Marcel Heinzmann ◽  
...  

Abstract Micropatterns applied to proton exchange membranes can improve the performance of polymer electrolyte fuel cells; however, the mechanism underlying this improvement is yet to be clarified. In this study, a patterned membrane electrode assembly (MEA) was compared with a flat one using electrochemical impedance spectroscopy and distribution of relaxation time analysis. The micropattern positively affects the oxygen reduction reaction by increasing the reaction area. However, simultaneously, the pattern negatively affects the gas diffusion because it lengthens the average oxygen transport path through the catalyst layer. In addition, the patterned MEA is more vulnerable to flooding, but performs better than the flat MEA in low-humidity conditions. Therefore, the composition, geometry, and operating conditions of the micropatterned MEA should be comprehensively optimized to achieve optimal performance.


Surfaces ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 336-348 ◽  
Author(s):  
Gustav W. Sievers ◽  
Anders W. Jensen ◽  
Volker Brüser ◽  
Matthias Arenz ◽  
María Escudero-Escribano

The development of catalysts for the oxygen reduction reaction in low-temperature fuel cells depends on efficient and accurate electrochemical characterization methods. Currently, two primary techniques exist: rotating disk electrode (RDE) measurements in half-cells with liquid electrolyte and single cell tests with membrane electrode assemblies (MEAs). While the RDE technique allows for rapid catalyst benchmarking, it is limited to electrode potentials far from operating fuel cells. On the other hand, MEAs can provide direct performance data at realistic conditions but require specialized equipment and large quantities of catalyst, making them less ideal for early-stage development. Using sputtered platinum thin-film electrodes, we show that gas diffusion electrode (GDE) half-cells can be used as an intermediate platform for rapid benchmarking at fuel-cell relevant current densities (~1 A cm−2). Furthermore, we demonstrate how different parameters (loading, electrolyte concentration, humidification, and Nafion membrane) influence the performance of unsupported platinum catalysts. The specific activity could be measured independent of the applied loading at potentials down to 0.80 VRHE reaching a value of 0.72 mA cm−2 at 0.9 VRHE in the GDE. By comparison with RDE measurements and Pt/C measurements, we establish the importance of catalyst characterization under realistic reaction conditions.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 313
Author(s):  
Safia Khan ◽  
Syed Sakhawat Shah ◽  
Mohsin Ali Raza Anjum ◽  
Mohammad Rizwan Khan ◽  
Naveed Kausar Janjua

Ammonia electro-oxidation (AEO) is a zero carbon-emitting sustainable means for the generation of hydrogen fuel, but its commercialization is deterred due to sluggish reaction kinetics and the poisoning of expensive metal electrocatalysts. With this perspective, CuO impregnated γ-Al2O3 (CuO/γ-Al2O3) hybrid materials were synthesized as effective and affordable electrocatalysts and investigated for AEO in alkaline media. Structural investigations were performed via different characterization techniques, i.e., X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS). The morphology of γ-Al2O3 support as interconnected porous structures rendered the CuO/γ-Al2O3 nanocatalysts with robust activity. The additional CuO impregnation resulted in the enhanced electrochemical active surface area (ECSAs) and diffusion coefficient and spiked the electrocatalytic performance for NH3 electrolysis. Owing to good values of diffusion coefficient for AEO, low bandgap, and availability of ample ECSA at higher CuO to γ-Al2O3 ratio, these proposed electrocatalysts were proved to be effective in AEO. Due to good reproducibility, electrochemical stability, and higher activity for ammonia electro-oxidation, CuO/γ-Al2O3 nanomaterials are proposed as efficient promoters, electrode materials, or catalysts in ammonia electrocatalysis.


2011 ◽  
Vol 14 (3) ◽  
pp. 159-165
Author(s):  
Liang Fang ◽  
Li Sheng ◽  
Xiaoxia Guo ◽  
Jianhua Fang ◽  
Zi-Feng Ma

The membrane electrode assemblies (MEAs) based on phosphoric acid (PA)-doped poly[2,2’-(p-oxydiphenylene)-5,5’-bibenzimidazole] (OPBI) membranes were prepared for the high temperature polymer electrolyte membrane fuel cells, and the moderate molecular weight poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (mPBI) with good solubility in aprotic solvents was synthesized and utilized as the binder in catalyst layers for the first time. The hot press and the components in catalyst layers that affected the performances of MEAs were studied. The cell performance evaluation and electrochemical impedance spectroscopy were carried out at temperatures ranging from 80 to 160 °C in a single cell setup. It was found that the prepared OPBI and the moderate molecular weight mPBI with high solubilities of polybenzimidazole could facilitate and simplify the preparation of MEAs. The novel MEAs using the PA-doped OPBI membranes and moderate molecular weight mPBI exhibited good performances in the polarization tests, constant current tests, and temperature cycle tests, which were comparable with those traditional MEAs using the PA-doped mPBI.


Sign in / Sign up

Export Citation Format

Share Document