scholarly journals The role of loop and β-turn residues as structural and functional determinants for the lipoyl domain from the Escherichia coli 2-oxoglutarate dehydrogenase complex

2007 ◽  
Vol 409 (2) ◽  
pp. 357-366 ◽  
Author(s):  
D. Dafydd Jones ◽  
Richard N. Perham

The lipoyl domain of the dihydrolipoyl succinyltransferase (E2o) component of the 2OGDH (2-oxoglutarate dehydrogenase) multienzyme complex houses the lipoic acid cofactor through covalent attachment to a specific lysine side chain residing at the tip of a β-turn. Residues within the lipoyl-lysine β-turn and a nearby prominent loop have been implicated as determinants of lipoyl domain structure and function. Protein engineering of the Escherichia coli E2o lipoyl domain (E2olip) revealed that removal of residues from the loop caused a major structural change in the protein, which rendered the domain incapable of reductive succinylation by 2-oxoglutarate decarboxylase (E1o) and reduced the lipoylation efficiency. Insertion of a new loop corresponding to that of the E. coli pyruvate dehydrogenase lipoyl domain (E2plip) restored lipoylation efficiency and the capacity to undergo reductive succinylation returned, albeit at a lower rate. Exchange of the E2olip loop sequence significantly improved the ability of the domain to be reductively acetylated by pyruvate decarboxylase (E1p), retaining approx. 10-fold more acetyl groups after 25 min than wild-type E2olip. Exchange of the β-turn residue on the N-terminal side of the E2o lipoyl-lysine DKA/V motif to the equivalent residue in E2plip (T42G), both singly and in conjunction with the loop exchange, reduced the ability of the domain to be reductively succinylated, but led to an increased capacity to be reductively acetylated by the non-cognate E1p. The T42G mutation also slightly enhanced the lipoylation rate of the domain. The surface loop is important to the structural integrity of the protein and together with Thr42 plays an important role in specifying the interaction of the lipoyl domain with its partner E1o in the E. coli 2OGDH complex.

2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2002 ◽  
Vol 184 (9) ◽  
pp. 2533-2538 ◽  
Author(s):  
Dvora Berenstein ◽  
Kirsten Olesen ◽  
Christian Speck ◽  
Ole Skovgaard

ABSTRACT The Vibrionaceae family is distantly related to Enterobacteriaceae within the group of bacteria possessing the Dam methylase system. We have cloned, sequenced, and analyzed the dnaA gene region of Vibrio harveyi and found that although the organization of the V. harveyi dnaA region differs from that of Escherichia coli, the expression of both genes is autoregulated and ATP-DnaA binds cooperatively to ATP-DnaA boxes in the dnaA promoter region. The DnaA proteins of V. harveyi and E. coli are interchangeable and function nearly identically in controlling dnaA transcription and the initiation of chromosomal DNA replication despite the evolutionary distance between these bacteria.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2021 ◽  
Author(s):  
Heesu Kim ◽  
Dong Gun Lee

Abstract Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exert oxidative stress on microorganisms. The spread of antibiotic resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxyldeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentation were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 405
Author(s):  
David L. Lin ◽  
German M. Traglia ◽  
Rachel Baker ◽  
David J. Sherratt ◽  
Maria Soledad Ramirez ◽  
...  

Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerCAb and XerDAb) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerCAb, indicating that the first step in the recombination reaction took place. The results described show that XerCAb and XerDAb are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria.


1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


2015 ◽  
Vol 198 (5) ◽  
pp. 846-856 ◽  
Author(s):  
Claudia F. Martinez de la Peña ◽  
Leon De Masi ◽  
Shahista Nisa ◽  
George Mulvey ◽  
Jesse Tong ◽  
...  

ABSTRACTEnteropathogenicEscherichia coli(EPEC) remains a significant cause of infant diarrheal illness and associated morbidity and mortality in developing countries. EPEC strains are characterized by their ability to colonize the small intestines of their hosts by a multistep program involving initial loose attachment to intestinal epithelial cells followed by an intimate adhesion phase. The initial loose interaction of typical EPEC with host intestinal cells is mediated by bundle-forming pili (BFP). BFP are type 4b pili (T4bP) based on structural and functional properties shared with T4bP expressed by other bacteria. The major structural subunit of BFP is called bundlin, a T4b pilin expressed from thebfpAgene in the BFP operon, which contains three additional genes that encode the pilin-like proteins BfpI, BfpJ, and BfpK. In this study, we show that, in the absence of the BFP retraction ATPase (BfpF), BfpI, BfpJ, and BfpK are dispensable for BFP biogenesis. We also demonstrate that these three minor pilins are incorporated along with bundlin into the BFP filament and contribute to its structural integrity and host cell adhesive properties. The results confirm that previous findings in T4aP systems can be extended to a model T4bP such as BFP.IMPORTANCEBundle-forming pili contribute to the host colonization strategy of enteropathogenicEscherichia coli. The studies described here investigate the role for three minor pilin subunits in the structure and function of BFP in EPEC. The studies also suggest that these subunits could be antigens for vaccine development.


1999 ◽  
Vol 181 (18) ◽  
pp. 5847-5851 ◽  
Author(s):  
Thomas G. Duthy ◽  
Lothar H. Staendner ◽  
Paul A. Manning ◽  
Michael W. Heuzenroeder

ABSTRACT We have sequenced the entire region of DNA required for the biosynthesis of CS5 pili from enterotoxigenic Escherichia coli O115:H40 downstream of the major subunit gene, designatedcsfA (for coli surface factor five A). Five more open reading frames (ORFs) (csfB, csfC,csfE, csfF, and csfD) which are transcribed in the same direction as the major subunit and are flanked by a number of insertion sequence regions have been identified. T7 polymerase-mediated overexpression of the cloned csf ORFs confirmed protein sizes based on the DNA sequences that encode them. The expression of only the csf region in E. coli K-12 resulted in the hemagglutination of human erythrocytes and the cell surface expression of CS5 pili, suggesting that the cluster contains all necessary information for CS5 pilus biogenesis and function.


2000 ◽  
Vol 182 (15) ◽  
pp. 4234-4240 ◽  
Author(s):  
Khoosheh K. Gosink ◽  
Claudia C. Häse

ABSTRACT Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H+ or Na+ into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions inpomA, pomB, motX, ormotY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complementedfliG-null strains of the parent species but notfliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB,motX, and motY became weakly motile when theE. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins ofV. cholerae and that the hybrid motors are driven by the proton motive force.


Sign in / Sign up

Export Citation Format

Share Document