scholarly journals Methods for Evaluating Sensory, Affective and Cognitive Disorders in Neuropathic Rodents

2020 ◽  
Vol 18 ◽  
Author(s):  
Enza Palazzo ◽  
Ida Marabese ◽  
Francesca Gargano ◽  
Francesca Guida ◽  
Carmela Belardo ◽  
...  

: The animal models of neuropathic pain that faithfully reproduce the symptoms that occur in humans are a fundamental tool for understanding the mechanisms underlying the disease, identifying new targets, and developing effective drugs. So far, the studies aimed at describing the animal models of neuropathic pain have been focused mainly on the sensory symptoms associated with the disease consisting of mechanical allodynia and hyperalgesia, cold allodynia and hyperalgesia, and heat hyperalgesia. However, affective, and cognitive comorbidities occur in patients suffering from neuropathic pain, arising in a closely associated and dependent manner on the sensory symptoms. The same occurs in animal models of neuropathic pain in which anxiety- and depressive-like behaviors and cognitive disorders are observable at different time points from the induction of neuropathy. Today there are several tests available that exploit different paradigms in rodents for measuring sensorial, affective, and cognitive behavior. This review will describe those mainly used in the scientific community. The tests mainly used are based on the motor activity of the animals tested, so it is fundamental that it remains unaffected in the model used for inducing neuropathic pain. We hope that this review will be useful to the scientific community to direct the choice towards the best, most suitable, and simplest tests for the study of the sensory, affective, and cognitive symptoms associated with neuropathic pain.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Zhiyong Wang ◽  
Jianwei Wang ◽  
Lihua Qin ◽  
Weiguang Zhang

Neuropathic pain is common in clinical practice. Exploration of new drug therapeutics has always been carried out for more satisfactory effects and fewer side-effects. In the present study, we aimed to investigate effects of Tongluo Zhitong Prescription (TZP), a compounded Chinese medicine description, on neuropathic pain model of rats with chronic constriction injury (CCI). The CCI model was established by loosely ligating sciatic nerve with catgut suture, proximal to its trifurcation. The static and dynamic allodynia, heat hyperalgesia, mechanical allodynia, cold allodynia, and gait were assessed. Our results showed that TZP alleviated CCI-induced static and dynamic allodynia, suppressed heat hyperalgesia and cold and mechanical allodynia, and improved gait function. These results suggest that TZP could alleviate neuropathic pain. Further experiments are needed to explore its mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueshu Tao ◽  
Xin Luo ◽  
Tianhe Zhang ◽  
Brad Hershey ◽  
Rosana Esteller ◽  
...  

Mounting evidence from animal models of inflammatory and neuropathic pain suggests that inflammation regulates the resolution of pain by producing specialized pro-resolving mediators (SPMs), such as resolvin D1 (RvD1). However, it remains unclear how SPMs are induced in the central nervous system and whether these mechanisms can be reconciled with outcomes of neuromodulation therapies for pain, such as spinal cord stimulation. Here, we show that in a male rat model of neuropathic pain produced by spared nerve injury (SNI), 1 kHz spinal cord stimulation (1 kHz SCS) alone was sufficient to reduce mechanical allodynia and increase RvD1 in the cerebrospinal fluid (CSF). SNI resulted in robust and persistent mechanical allodynia and cold allodynia. Spinal cord electrode implantation was conducted at the T11-T13 vertebral level 1 week after SNI. The spinal locations of the implanted electrodes were validated by X-Ray radiography. 1 kHz SCS was applied for 6 h at 0.1 ms pulse-width, and this stimulation alone was sufficient to effectively reduce nerve injury-induced mechanical allodynia during stimulation without affecting SNI-induced cold allodynia. SCS alone significantly reduced interleukin-1β levels in both serum and CSF samples. Strikingly, SCS significantly increased RvD1 levels in the CSF but not serum. Finally, intrathecal injection of RvD1 (100 and 500 ng, i.t.) 4 weeks after nerve injury reduced SNI-induced mechanical allodynia in a dose-dependent manner. Our findings suggest that 1 kHz SCS may alleviate neuropathic pain via reduction of IL-1β and via production and/or release of RvD1 to control SNI-induced neuroinflammation.


2021 ◽  
Vol 15 ◽  
Author(s):  
David Reiss ◽  
Hervé Maurin ◽  
Emilie Audouard ◽  
Miriam Martínez-Navarro ◽  
Yaping Xue ◽  
...  

Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown.Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively.Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females.Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.


2010 ◽  
Vol 112 (2) ◽  
pp. 432-439 ◽  
Author(s):  
Hee Kee Kim ◽  
Yan Ping Zhang ◽  
Young Seob Gwak ◽  
Salahadin Abdi

Background Paclitaxel is a widely used chemotherapeutic drug for breast and ovarian cancer. Unfortunately, it induces neuropathic pain, which is a dose-limiting side effect. Free radicals have been implicated in many neurodegenerative diseases. The current study tests the hypothesis that a free radical scavenger plays an important role in reducing chemotherapy-induced neuropathic pain. Methods Neuropathic pain was induced by intraperitoneal injection of paclitaxel (2 mg/kg) on four alternate days (days 0, 2, 4, and 6) in male Sprague-Dawley rats. Phenyl N-tert-butylnitrone (PBN), a free radical scavenger, was administered intraperitoneally as a single dose or multiple doses before or after injury. Mechanical allodynia was measured by using von Frey filaments. Results The administration of paclitaxel induced mechanical allodynia, which began to manifest on days 7-10, peaked within 2 weeks, and plateaued for at least 2 months after the first paclitaxel injection. A single injection or multiple intraperitoneal injections of PBN ameliorated paclitaxel-induced pain behaviors in a dose-dependent manner. Further, multiple administrations of PBN starting on day 7 through day 15 after the first injection of paclitaxel completely prevented the development of mechanical allodynia. However, an intraperitoneal administration of pbn for 8 days starting with the first paclitaxel injection did not prevent the development of pain behavior. Conclusions This study clearly shows that PBN alleviated mechanical allodynia induced by paclitaxel in rats. Furthermore, our data show that PBN given on days 7 through 15 after the first paclitaxel injection prevented the development of chemotherapy-induced neuropathic pain. This clearly has a clinical implication.


2013 ◽  
Vol 4 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Tianle Gao ◽  
Jingxia Hao ◽  
Zsuzsanna Wiesenfeld-Hallin ◽  
Xiao-Jun Xu

AbstractAimsPain in response to innocuous cold stimulation (cold allodynia) is a common symptom in patients with neuropathic pain. Cold allodynia is difficult to treat and its mechanisms are poorly understood. Several transient receptor potential (TRP) channels have been shown to be the molecular sensors for cold stimulation in a temperature-dependent manner, but the contribution of various TRP channels in mediating cold allodynia in neuropathic pain is unclear. We have previously shown that spinally injured rats developed neuropathic pain-like behaviors, including marked cold allodynia. We now assessed the role of TRP channels in mediating cold allodynia in rats after ischemic spinal cord injury.Methods Methods: Spinal cord injury was produced using a photochemical method. The mechanical allodynia was assessed by examining the vocalization thresholds to graded mechanical touch/pressure applied with von Frey hairs. Temperature controlled cold stimulation was produced by a Peltier thermode (active surface 25 mm × 50 mm) connected to a MSA Thermal Simulator (Somedic, Sweden) with baseline temperature of 32 °C. The rate of temperature change was 0.5 °C/s. The temperature required to elicit cold allodynia was examined. The responses of the rats to topical application of icilin or menthol, agonists of transient receptor potential melastain 8 (TRPM8), were also studied.ResultsNormal rats did not exhibit nociceptive responses to cooling stimulation to the trunk and back area (minimal temperature +6°C) and they also did not react aversively to topical application of icilin or menthol. After spinal cord injury, the rats developed mechanical allodynia at the trunk and back just rostral to the dermatome of the injured spinal segments. In the same area, rats exhibited significant nociceptive responses to cooling from day 1 after injury, lasting for at least 70 days which is the longest time of observation. For the first two weeks after injury, the majority of spinally injured rats had a nociceptive response to cooling above 17°C. At day 70, about 50% of rats responded to cooling above 17 °C. Topical application of 400 μM icilin or 4mM menthol also elicited pain-like responses in spinally injured rats and these two cold mimetics also significantly exacerbated existing mechanical allodynia.ConclusionOur results showed that activation of the TRPM8 channel by menthol or icilin triggers allodynia in spinally injured rats and increases, rather than decreases, mechanical allodynia. TRPM8 channels which respond to cooling above 17 ° C may be involved at least in part in mediating cold allodynia in the rat model of neuropathic spinal cord injury pain.ImplicationsThe work introduced a method of quantitative testings of responses of rats to cold stimulation and may contribute to the understanding of mechanisms of cold allodynia after injury to the nervous system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Willias Masocha

There is a scarcity of drugs to either prevent or properly manage chemotherapy-induced neuropathic pain (CINP). Cannabis or cannabinoids have been reported to improve pain measures in patients with neuropathic pain. For this review, a search was done in PubMed for papers that examined the expression of and/or evaluated the use of cannabinoids or drugs that prevent or treat established CINP in a CB receptor-dependent manner in animal models. Twenty-eight articles that fulfilled the inclusion and exclusion criteria established were analysed. Studies suggest there is a specific deficiency of endocannabinoids in the periphery during CINP. Inhibitors of FAAH and MGL, enzymes that degrade the endocannabinoids, CB receptor agonists, desipramine, and coadministered indomethacin plus minocycline were found to either prevent the development and/or attenuate established CINP in a CB receptor-dependent manner. The studies analysed suggest that targeting the endocannabinoid system for prevention and treatment of CINP is a plausible therapeutic option. Almost 90% of the studies on animal models of CINP analysed utilised male rodents. Taking into consideration clinical and experimental findings that show gender differences in the mechanisms involved in pain including CINP and in response to analgesics, it is imperative that future studies on CINP utilise more female models.


2014 ◽  
Vol 121 (1) ◽  
pp. 160-169 ◽  
Author(s):  
Franziska Barthel ◽  
Andrea Urban ◽  
Lukas Schlösser ◽  
Volker Eulenburg ◽  
Robert Werdehausen ◽  
...  

Abstract Background: Dysfunction of spinal glycinergic neurotransmission is a major pathogenetic factor in neuropathic pain. The synaptic glycine concentration is controlled by the two glycine transporters (GlyT) 1 and 2. GlyT inhibitors act antinociceptive in various animal pain models when applied as bolus. Yet, in some studies, severe neuromotor side effects were reported. The aim of the current study was to elucidate whether continuous inhibition of GlyT ameliorates neuropathic pain without side effects and whether protein expression of GlyT1, GlyT2, or N-methyl-d-aspartate receptor subunit NR-1 in the spinal cord is affected. Methods: In the chronic constriction injury model of neuropathic pain, male Wistar rats received specific GlyT1 and GlyT2 inhibitors (ALX5407 and ALX1393; Sigma-Aldrich®, St. Louis, MO) or vehicle for 14 days via subcutaneous osmotic infusion pumps (n = 6). Mechanical allodynia and thermal hyperalgesia were assessed before, after chronic constriction injury, and every 2 days during substance application. At the end of behavioral assessment, the expression of GlyT1, GlyT2, and NR-1 in the spinal cord was determined by Western blot analysis. Results: Both ALX5407 and ALX1393 ameliorated thermal hyperalgesia and mechanical allodynia in a time- and dose-dependent manner. Respiratory or neuromotor side effects were not observed. NR-1 expression in the ipsilateral spinal cord was significantly reduced by ALX5407, but not by ALX1393. The expression of GlyT1 and GlyT2 remained unchanged. Conclusions: Continuous systemic inhibition of GlyT significantly ameliorates neuropathic pain in rats. Thus, GlyT represent promising targets in pain research. Modulation of N-methyl-d-aspartate receptor expression might represent a novel mechanism for the antinociceptive action of GyT1 inhibitors.


2020 ◽  
Vol 132 (6) ◽  
pp. 1540-1553
Author(s):  
Raquel Tonello ◽  
Wenrui Xie ◽  
Sang Hoon Lee ◽  
Min Wang ◽  
Xiaojuan Liu ◽  
...  

Abstract Background Patients undergoing cancer treatment often experience chemotherapy-induced neuropathic pain at their extremities, for which there is no U.S. Food and Drug Administration–approved drug. The authors hypothesized that local sympathetic blockade, which is used in the clinic to treat various pain conditions, can also be effective to treat chemotherapy-induced neuropathic pain. Methods A local sympathectomy (i.e., cutting the ipsilateral gray rami entering the spinal nerves near the L3 and L4 dorsal root ganglia) was performed in mice receiving intraperitoneal injections every other day of the chemotherapeutic drug paclitaxel. Sympathectomy effects were then assessed in chemotherapy-induced pain-like behaviors (i.e., mechanical and cold allodynia) and neuroimmune and electrophysiologic responses. Results Local microsympathectomy produced a fast recovery from mechanical allodynia (mean ± SD: sympathectomy vs. sham at day 5, 1.07 ± 0.34 g vs. 0.51 ± 0.17g, n = 5, P = 0.030 in male mice, and 1.08 ± 0.28 g vs. 0.62 ± 0.16 g, n = 5, P = 0.036 in female mice) and prevented the development of cold allodynia in both male and female mice after paclitaxel. Mechanistically, microsympathectomy induced transcriptional increases in dorsal root ganglia of macrophage markers and anti-inflammatory cytokines, such as the transforming growth factor-β. Accordingly, depletion of monocytes/macrophages and blockade of transforming growth factor-β signaling reversed the relief of mechanical allodynia by microsympathectomy. In particular, exogenous transforming growth factor-β was sufficient to relieve mechanical allodynia after paclitaxel (transforming growth factor-β 100 ng/site vs. vehicle at 3 h, 1.21 ± 0.34g vs. 0.53 ± 0.14 g, n = 5, P = 0.001 in male mice), and transforming growth factor-β signaling regulated neuronal activity in dorsal root ganglia. Conclusions Local sympathetic nerves control the progression of immune responses in dorsal root ganglia and pain-like behaviors in mice after paclitaxel, raising the possibility that clinical strategies already in use for local sympathetic blockade may also offer an effective treatment for patients experiencing chemotherapy-induced neuropathic pain. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 548
Author(s):  
Ji Hwan Lee ◽  
Daeun Min ◽  
Donghun Lee ◽  
Woojin Kim

Oxaliplatin is a platinum derivative chemotherapeutic drug widely used against cancers, but even a single treatment can induce a severe allodynia that requires treatment interruption and dose diminution. The rhizome of Zingiber officinale roscoe (Z. officinale, ginger), has been widely used in traditional medicine to treat various diseases causing pain; however, its effect against oxaliplatin-induced neuropathic pain has never been assessed. In mice, a single oxaliplatin (6 mg/kg, i.p.) treatment induced significant cold and mechanical allodynia. Cold and mechanical allodynia were assessed by acetone drop and von Frey filament tests, respectively. Water extracts of Z. officinale (100, 300, and 500 mg/kg, p.o.) significantly attenuated both cold and mechanical allodynia induced by oxaliplatin. Intrathecal pre-treatment with the antagonist 5-HT1A (NAN-190, i.t., 1 μg), but not with the antagonist 5-HT2A (ketanserin, i.t., 1 μg), significantly blocked the analgesic effect of Z. officinale against both cold and mechanical allodynia. However, 5-HT3 antagonist (MDL-72222, i.t., 15 μg) administration only blocked the anti-allodynic effect of Z. officinale against cold allodynia. Real-time PCR analysis demonstrated that Z. officinale significantly increased the mRNA expression of the spinal 5-HT1A receptor that was downregulated after oxaliplatin injection. These results suggest that Z. officinale may be a viable treatment option for oxaliplatin-induced neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document