mediate inflammation
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Julie Joseph ◽  
Benjamin Rahmani ◽  
Yonesha Cole ◽  
Neha Puttagunta ◽  
Edward Lin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Zhu ◽  
Feng Li ◽  
Miqun Wang ◽  
Huibin Su ◽  
Xuedong Wu ◽  
...  

Inflammation-associated chronic pain is a global clinical problem, affecting millions of people worldwide. However, the underlying mechanisms that mediate inflammation-associated chronic pain remain unclear. A rat model of cutaneous inflammation induced by Complete Freund’s Adjuvant (CFA) has been widely used as an inflammation-induced pain hypersensitivity model. We present the transcriptomics profile of CFA-induced inflammation in the rat dorsal root ganglion (DRG) via an approach that targets gene expression, DNA methylation, and post-transcriptional regulation. We identified 418 differentially expressed mRNAs, 120 differentially expressed microRNAs (miRNAs), and 2,670 differentially methylated regions (DMRs), which were all highly associated with multiple inflammation-related pathways, including nuclear factor kappa B (NF-κB) and interferon (IFN) signaling pathways. An integrated analysis further demonstrated that the activator protein 1 (AP-1) network, which may act as a regulator of the inflammatory response, is regulated at both the transcriptomic and epigenetic levels. We believe our data will not only provide drug screening targets for the treatment of chronic pain and inflammation but will also shed light on the molecular network associated with inflammation-induced hyperalgesia.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sarah J. Benjamin ◽  
Kelly L. Hawley ◽  
Paola Vera-Licona ◽  
Carson J. La Vake ◽  
Jorge L. Cervantes ◽  
...  

Abstract Background Macrophages play prominent roles in bacteria recognition and clearance, including Borrelia burgdorferi (Bb), the Lyme disease spirochete. To elucidate mechanisms by which MyD88/TLR signaling enhances clearance of Bb by macrophages, we studied wildtype (WT) and MyD88−/−Bb-stimulated bone marrow-derived macrophages (BMDMs). Results MyD88−/− BMDMs exhibit impaired uptake of spirochetes but comparable maturation of phagosomes following internalization of spirochetes. RNA-sequencing of infected WT and MyD88−/− BMDMs identified a large cohort of differentially expressed MyD88-dependent genes associated with re-organization of actin and cytoskeleton during phagocytosis along with several MyD88-independent chemokines involved in inflammatory cell recruitment. We computationally generated networks which identified several MyD88-dependent intermediate proteins (Rhoq and Cyfip1) that are known to mediate inflammation and phagocytosis respectively. Conclusion Our findings show that MyD88 signaling enhances, but is not required, for bacterial uptake or phagosomal maturation and provide mechanistic insights into how MyD88-mediated phagosomal signaling enhances Bb uptake and clearance.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1466
Author(s):  
Sebastian G. Walter ◽  
Sebastian Scheidt ◽  
Robert Nißler ◽  
Christopher Gaisendrees ◽  
Kourosh Zarghooni ◽  
...  

Cells within the tumor stroma are essential for tumor progression. In particular, cancer-associated fibroblasts (CAF) and CAF precursor cells (resident fibroblasts and mesenchymal stromal cells) are responsible for the formation of the extracellular matrix in tumor tissue. Consequently, CAFs directly and indirectly mediate inflammation, metastasis, immunomodulation, angiogenesis, and the development of tumor chemoresistance, which is orchestrated by complex intercellular cytokine-mediated crosstalk. CAFs represent a strategic target in antitumor therapy but their heterogeneity hinders effective treatment regimes. In-depth understanding of CAF subpopulations and knowledge of specific functions in tumor progression will ultimately result in more specific and effective cancer treatments. This review provides a detailed description of CAFs and CAF precursor cells and summarizes possible treatment strategies as well as molecular targets of these cells in antitumor therapies.


2021 ◽  
Author(s):  
Sarah Benjamin ◽  
Kelly L. Hawley ◽  
Paola Vera-Licona ◽  
Carson J. La Vake ◽  
Jorge L. Cervantes ◽  
...  

Abstract Background: Macrophages play prominent roles in bacteria recognition and clearance, including Borrelia burgdorferi (Bb), the Lyme disease spirochete. To elucidate mechanisms by which MyD88/TLR signaling enhances clearance of Bb by macrophages, we studied wildtype (WT) and MyD88-/- Bb-stimulated bone marrow-derived macrophages (BMDMs). Results: MyD88-/- BMDMs exhibit impaired uptake of spirochetes but comparable maturation of phagosomes following internalization of spirochetes. RNA-sequencing of infected WT and MyD88-/- BMDMs identified a large cohort of differentially expressed MyD88-dependent genes associated with re-organization of actin and cytoskeleton during phagocytosis along with several MyD88-independent chemokines involved in inflammatory cell recruitment. We computationally generated networks which identified several MyD88-dependent intermediate proteins (Rhoq and Cyfip1) that are known to mediate inflammation and phagocytosis respectively. Conclusion: Our findings show that MyD88 signaling enhances, but is not required, for bacterial uptake or phagosomal maturation and provide mechanistic insights into how MyD88-mediated phagosomal signaling enhances Bb uptake and clearance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Amelia L. Fryer ◽  
Amar Abdullah ◽  
Juliet M. Taylor ◽  
Peter J. Crack

Neuroinflammation driven by type-I interferons in the CNS is well established to exacerbate the progression of many CNS pathologies both acute and chronic. The role of adaptor protein Stimulator of Interferon Genes (STING) is increasingly appreciated to instigate type-I IFN-mediated neuroinflammation. As an upstream regulator of type-I IFNs, STING modulation presents a novel therapeutic opportunity to mediate inflammation in the CNS. This review will detail the current knowledge of protective and detrimental STING activity in acute and chronic CNS pathologies and the current therapeutic avenues being explored.


Sign in / Sign up

Export Citation Format

Share Document