scholarly journals Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tae Wook Heo ◽  
Andrew Grieder ◽  
Bo Wang ◽  
Marissa Wood ◽  
Tim Hsu ◽  
...  

AbstractAlthough multiple oxide-based solid electrolyte materials with intrinsically high ionic conductivities have emerged, practical processing and synthesis routes introduce grain boundaries and other interfaces that can perturb primary conduction channels. To directly probe these effects, we demonstrate an efficient and general mesoscopic computational method capable of predicting effective ionic conductivity through a complex polycrystalline oxide-based solid electrolyte microstructure without relying on simplified equivalent circuit description. We parameterize the framework for Li7-xLa3Zr2O12 (LLZO) garnet solid electrolyte by combining synthetic microstructures from phase-field simulations with diffusivities from molecular dynamics simulations of ordered and disordered systems. Systematically designed simulations reveal an interdependence between atomistic and mesoscopic microstructural impacts on the effective ionic conductivity of polycrystalline LLZO, quantified by newly defined metrics that characterize the complex ionic transport mechanism. Our results provide fundamental understanding of the physical origins of the reported variability in ionic conductivities based on an extensive analysis of literature data, while simultaneously outlining practical design guidance for achieving desired ionic transport properties based on conditions for which sensitivity to microstructural features is highest. Additional implications of our results are discussed, including a possible connection between ion conduction behavior and dendrite formation.

2010 ◽  
Vol 156-157 ◽  
pp. 799-802
Author(s):  
Ming Zhou ◽  
Yan Wen Tian

This experiment composes irreversible cells using ultrafine electrolyte materials and platinum slices, to measure the ionic conductivity the cells at normal temperatures with the help of impedance 1286 spectroscopy. We have calculated the ionic conductivities, which indicate that the ionic conductivities of the merchant LaF3 polycrystalline powder and the powder by microwave method are higher than the ones of LaF3 crystal and the powder by Sol-Gel method, to achieve 10-6 Scm-1, so, they are better ionic conductors at normal temperature and can be used as sensor base materials. The experimental data show that O- participates in ionic conduction.


1990 ◽  
Vol 210 ◽  
Author(s):  
C. Lane Rohrer ◽  
G. C. Farrington

AbstractMolecular dynamics simulations were carried out in an attempt to reproduce and explain the differing composition dependencies of the ionic conductivities of Na(I)-Ba(II)- and Na(I)-Sr(II)- ß' '-alumina. Impedance spectroscopy measurements of Na1.67-2xBaxMg0.67Al10.33O17, where x = 0.0 - 0.835, showed a distinct minimum in the conductivity when x = 0.67, or 80% exchange of Ba(II) for Na(I). Evidence for mobile cation ordering at that composition was seen in the simulation results and the general change in conductivity with Ba(II) content was reproduced rather well. The results of a similar experimental study of Na(I)-Sr(II)-ß' '-alumina did not show a minimum in the conductivity, but our simulations incorrectly predicted the Sr(II) system to behave in the same fashion as the Ba(II) system. Possible reasons for this discrepancy are suggested, including problems with transferring potentials between oxides and the influence of absorbed water on the experimental results.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3559
Author(s):  
Jinhua Hong ◽  
Shunsuke Kobayashi ◽  
Akihide Kuwabara ◽  
Yumi H. Ikuhara ◽  
Yasuyuki Fujiwara ◽  
...  

Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1 ~ 0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


2019 ◽  
Author(s):  
Roman Schlem ◽  
Michael Ghidiu ◽  
Sean Culver ◽  
Anna-Lena Hansen ◽  
Wolfgang Zeier

<p>The lithium argyrodites Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I) have been gaining momentum as candidates for electrolytes in all-solid-state batteries. While these materials have been well-characterized structurally, the influences of the static and dynamic lattice properties are not fully understood. Recent improvements to the ionic conductivity of Li<sub>6</sub>PS<sub>5</sub>I (which as a parent compound is a poor ionic conductor) via elemental substitutions have shown that a multitude of influences affect the ionic transport in the lithium argyrodites, and that even poor conductors in this class have room left for improvement.</p><p>Here we explore the influence of isoelectronic substitution of sulfur with selenium in Li<sub>6</sub>PS<sub>5-<i>x</i></sub>Se<i><sub>x</sub></i>I. Using a combination of X-ray diffraction, impedance spectroscopy, Raman spectroscopy, and pulse-echo speed of sound measurements,we explore the influence of the static and dynamic lattice on the ionic transport. The substitution of S<sup>2-</sup>with Se<sup>2- </sup>broadens the diffusion pathways and structural bottlenecks, as well as leading to a softer more polarizable lattice, all of which lower the activation barrier and lead to an increase in the ionic conductivity. This work sheds light on ways to systematically understand and improve the functional properties of this exciting material family. </p>


2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


Sign in / Sign up

Export Citation Format

Share Document