scholarly journals Numerical Simulation on the Boiling Flow Patterns of Al2O3-Water Nanofluid in Micro/Minichannel under Different Hypergravity Levels and Directions

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Gen Li ◽  
Xiande Fang

Due to the influence of hypergravity that has a significant impact on the performance of heat exchanger in aircraft, which is crucial for electronic equipment on the plane and life safeties of pilots and passengers, a numerical study is conducted using Fluent 20R2 software to investigate boiling flow patterns under different gravity levels and directions. In this study, the thermophysical properties of nanofluids are analyzed, and select the most suitable theoretical model of thermal conductivity, viscosity, and surface tension for present simulations. Choose the grid structure of 122,116 after independence check for grid. The VOF approach is employed for present simulation, and the standard κ − ε turbulence model with nonequilibrium wall function is used. The UDFs for mass and energy source terms and thermophysical properties of nanofluid are developed for calculating the HTC of nanofluid. There are three different gravity directions with gravity levels from 1 g to 9 g. The results show that the flow pattern becomes the stratified flow with the gravity levels increasing when the hypergravity direction is perpendicular to the flow direction, and the HTCs decrease with the increment of gravity levels. The vapor-phase transform to circular when the hypergravity direction is the same as the flow direction, and the HTCs of the second half of the tube are decreasing with the increasing gravity levels. On the contrary, the vapor phase is elongated when the hypergravity direction is opposite to the flow direction, and the HTCs show the enhanced tendency.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2041
Author(s):  
Jin Ni ◽  
Bangyi Yu ◽  
Peng Wu

In recent years, the incoming sediments from upstream of the Huai River have continuously decreased. The relationship between flow and sediment has significantly changed. Therefore, the erosion and deposition characteristics of the river could be affected. To investigate this interaction between flow and sediment, the present study was conducted using the Wanglin section in the middle reach of the Huai River as the study site. A 1D hydrodynamic model was developed and validated using field data. Data from 1985–2014 were used as a continuous series while data from 2004–2014 were used as a repetitive series. The sediment variation and distribution processes at different locations were discussed. It was found that the river channel displayed several notable characteristics. In the flow direction, the channel had frontal erosion and backward deposition. The variation rate was relatively slow. With reduced sediment, the overall deposition at the Wanglin section was significantly mitigated. Future recommendations are provided based on the present simulation for flood mitigation along the Huai River.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


2021 ◽  
Vol 13 (9) ◽  
pp. 4748
Author(s):  
Edwin Villagran ◽  
Carlos Bojacá ◽  
Mohammad Akrami

The use of covered structures is an alternative increasingly used by farmers to increase crop yields per unit area compared to open field production. In Latin American countries such as Colombia, productive areas are located in with predominantly hillside soil conditions. In the last two decades, farmers have introduced cover structures adapted to these soil conditions, structures for which the behavior of factors that directly affect plant growth and development, such as microclimate, are still unknown. Therefore, in this research work, a CFD-3D model successfully validated with experimental data of temperature and air velocity was implemented. The numerical model was used to determine the behavior of air flow patterns and temperature distribution inside a Colombian passive greenhouse during daytime hours. The results showed that the slope of the terrain affects the behavior of the air flow patterns, generating thermal gradients inside the greenhouse with values between 1.26 and 16.93 °C for the hours evaluated. It was also found that the highest indoor temperature values at the same time were located in the highest region of the terrain. Based on the results of this study, future researches on how to optimize the microclimatic conditions of this type of sustainable productive system can be carried out.


Author(s):  
Faraz Afshari ◽  
Bayram Sahin ◽  
Barbara Marchetti ◽  
Fabio Polonara ◽  
Francesco Corvaro ◽  
...  

2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


A sector of utilization and transformation of wood give much money at the countries of the central Africa region. If we want to increase these advantages, it is important to do locally the first and second transformations of wood. Self-control of the wood drying is necessary to ameliorate a wood quality and to preserve an art work doing in wood. In this article, we are modeling a drying of one piece of bete wood (Mansonia altissima) with dimensions are 1m of length and thickness is no more than 25cm. We have used a literature to obtain a mass and heat equations and the thermophysical properties of the present wood. We have considered some thermophysical properties that we are unkempt in the precedent work [1]. We have experimentally obtained a relationship between a density of this wood with a water content. The others thermophysical properties come from the literature [1,2]. We have simulated a wood drying in the constant conditions and in the conditions of the bete drying table established by CIRAD Organization. A sensibility study is doing to validate a modeling. Then, the present modeling explains temperature, mass fraction of the vapor in air and water content evolutions during the industrial process of drying. This modeling can to be used for to overhaul a drying table of bete wood and the others of tropical woods. This work uses a gaseous pressure can be used to explain the drying with the high temperatures conditions.


Sign in / Sign up

Export Citation Format

Share Document