zircon evaporation
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 1)

H-INDEX

17
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Alexandra Käßner ◽  
Marion Tichomirowa ◽  
Manuel Lapp ◽  
Dietmar Leonhardt

<p>In the Late Carboniferous to Early Permian, post-orogenic processes led to the intrusion of compositionally diverse granitoids and to intense silicic volcanism in Central Europe. In the Lusatian Block, which is situated in the eastern part of the Saxothuringian Zone of the Variscan orogen, the late- to post-Variscan granitoids are subordinate in comparison to the Cadomian basement and late- to post-Variscan volcanic rocks are almost absent. The Lusatian Block is bound towards the NE and the SW by major deep reaching fault zones. Both the granitoid and the volcanic rocks are situated near the boundaries of the block and probably associated with the major NW trending faults of the Elbe Fault Zone (e.g. Hammer et al., 1999, Lisowiec et al., 2014, Oberc-Dziezic et al., 2015). The Elbe Fault Zone is a continental scale zone of crustal weakness that was reactivated with different kinematics at different times (Scheck et al., 2002). </p><p>We acquired new precise CA-ID-TIMS U-Pb zircon ages of the Koenigshain and the Stolpen granites and the volcanics of the Weissig Basin. Our new data show that the Variscan magmatism of the Lusatian Block occurred at two distinct periods, depending on the structures on which they are bound. The age difference between the two groups (12 Myr) is clearly evident in both CA-ID-TIMS and evaporation analyses. Consequently, zircon evaporation data of other granitoid and volcanic rocks that were not dated with CA-ID-TIMS can be assigned to one of the two groups in the Lusatian Block. The new age dating allows comparison of the evolution of the investigated rocks to adjacent Variscan magmatic rocks.</p><p> </p><p>References:</p><p>Hammer et al. (1999), Z. geol. Wiss 27, 401-415.</p><p>Lisowiec et al. (2014), Acta Geologica Polonica 64 (4), 457-472.</p><p>Oberc-Dziezic et al. (2015), Int. J. Earth. Sci. 104, 1139-1166.</p><p>Scheck et al. (2002), Tectonophysics 360, 281-299.</p>


Author(s):  
Rita da Cunha Leal Menezes ◽  
Herbet Conceição ◽  
Maria de Lourdes da Silva Rosa ◽  
Marco Antonio Galarza ◽  
Débora Correia Rios ◽  
...  

O Stock Nefelina-Sienítico Rio Pardo se localiza na porção sul do conjunto de intrusões alcalinas que constitui a Província Alcalina do Sul do Estado da Bahia. Esse corpo aflora numa área de 46 km2, sendo constituído por sienito, sienito com nefelina, nefelina sienito e sodalita sienito. A idade Pb-Pb obtida em monocristal de zircão para esse stock foi de 725 ± 2 Ma, a qual se insere no intervalo de idades para o magmatismo da parte sul dessa província alcalina (732 Ma a 720 Ma). Os dados litoquímicos obtidos para esse stock o posicionam na suíte alcalina subsaturada em SiO2 da Província Alcalina do Sul do Estado da Bahia. Os conteúdos de elementos traços asseguram sua afinidade anorogênica. Sua evolução, controlada por cristalização fracionada, se marca por acentuado enriquecimento em Na2O (até 15%) e Al2O3 (até 25%) e marcantes decréscimos em SiO2 (63% a 45%) e Elementos Terras Raras.Palavras-chave: nefelina sienito, idade Pb-Pb, Rio Pardo, BahiaABSTRACT: THE RIO PARDO NEPHELINE-SYENITIC STOCK, SOUTH BAHIA ALKALINE PROVINCE. The Rio Pardo nepheline-syenitic intrusion is located in the southern sector of the South Bahia Alkaline Province. It crops out over an area of 46 km2 and consists of syenite, nepheline-bearing syenite, nepheline syenite and blue-sodalite syenite. The Pb-Pb single-zircon evaporation age of 725 ± 2 Ma obtained for the Rio Pardo stock is in agreement with the age range (732 Ma to 720 Ma) for the southern part of province. Lithochemical data provide evidence to consider the Rio Pardo stock as a body of the SiO2 sub-saturated alkaline suite of the South Bahia Alkaline Province. Trace element contents indicate anorogenic afinity and the stock evolution, controlled by a fractional crystallization process, resulted in an outstanding enrichment of Na2O (up to 15%) and Al2O3 (up to 25%), and an important depletion of SiO2 (63% to 45%) and Rare Earth Elements.Keywords: nepheline syenite, Pb-Pb age, Rio Pardo, Bahia State.,


2009 ◽  
Vol 27 (4) ◽  
pp. 247-257 ◽  
Author(s):  
Lêda Maria Fraga ◽  
Moacir Jose Buenano Macambira ◽  
Roberto Dall’Agnol ◽  
João Batista Sena Costa

2009 ◽  
Vol 146 (2) ◽  
pp. 252-265 ◽  
Author(s):  
F. HIMMERKUS ◽  
T. REISCHMANN ◽  
D. KOSTOPOULOS

AbstractThe Serbo-Macedonian Massif is a basement complex in the Internal Hellenides of northern Greece, situated between the Vardar Zone to the west and the Rhodope Massif to the east. The Serbo-Macedonian Massif comprises several distinct basement units interpreted as terranes, the largest of which is the Gondwana-derived Vertiskos Terrane in the northwestern and central parts of the massif. A series of leucocratic meta-granites intrude the Silurian orthogneiss basement of the Vertiskos Terrane. No similar granites are found in any of the other units of the Internal Hellenides. The meta-granites have a pronounced crustal within-plate signature which is visible in lithology, major- and trace-element geochemistry and the Sr isotopic compositions. These intrusions were dated using the Pb–Pb single-zircon evaporation method, and yielded a Triassic age of between 240.7 ± 2.6 Ma and 221.7 ± 1.9 Ma on 17 samples, with a mean age of 228.3 ± 5.6 Ma. The zircons are purely magmatic, indicating that ages are primary crystallization ages. A Rb–Sr errorchron of the whole-rock samples of the Arnea granite yielded an age of 231.6 ± 9.9 Ma (MSWD = 82), and a mean 87Sr/86Sr initial ratio is 0.7142, indicating a crust-dominated source, and suggesting an A-type origin for the granites. The A-type meta-granites together with mafic intrusive bodies (amphibolites) in the Vertiskos Terrane may be evidence of Triassic rifting that led to the formation of a branch of Neotethys (Vardar–Meliata Ocean). Similar rock associations are also exposed in the Cyclades, and in massifs of the wider eastern Mediterranean realm related to the Gondwana-derived Hun Terrane, indicating that the Arnea-type granites are representatives of a major regional rifting event in Triassic times.


2001 ◽  
Vol 109 (2) ◽  
pp. 171-189 ◽  
Author(s):  
Sospeter Muhongo ◽  
Alfred Kröner ◽  
A. A. Nemchin

Sign in / Sign up

Export Citation Format

Share Document