fractional crystallization process
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 57 (7) ◽  
pp. 814-839 ◽  
Author(s):  
Nadia Mohammadi ◽  
Christopher R.M. McFarlane ◽  
David R. Lentz ◽  
Kathleen G. Thorne

U–Pb geochronology was applied to a combination of magmatic and hydrothermal minerals to help constrain the timing of emplacement of three units in the Mount Douglas Granite (MDG) and reveal their association with a complex mineralized hydrothermal system containing endogranitic Sn–W–Mo–Zn–Bi–U-bearing greisen/sheeted veins within the pluton. Magmatic monazite and zircon U–Pb ages obtained by LA–ICP–MS overlap at 368 Ma, recording a Late Devonian crystallization age for the MDG. Although discrimination, outside analytical error, of sequential pulses of magmatism is beyond the resolution of LA–ICP–MS U–Pb geochronology, geochemical variations of monazite accompanied by previous whole-rock geochemical analyses support a progressive fractional crystallization process starting from a parental magma (Dmd1), leading to the generation of Dmd2, and finally Dmd3 as the most fractionated unit. Hydrothermal uraninite, cassiterite, and monazite, collected from endogranitic greisen/sheeted veins, reveal evidence for syn-magmatic-related mineralization and a longer-lived post-magmatic hydrothermal system. The first stage is recorded by concordant uraninite dates at 367 ± 3 Ma and by an inverse isochron lower intercept of 362 ± 8 Ma for cassiterite. In contrast, hydrothermal monazite crystallized over a wider range of ages from 368 to 344 Ma, demonstrating post-magmatic hydrothermal activity within the MDG. These magmatic and hydrothermal ages combined with the geochemical signature of the MDG are similar to those documented for the nearby Mount Pleasant Sn–W–Mo–Bi–In granite-related deposit, which suggests that the two mineralizing systems occur at different levels of the same magmatic system.


2020 ◽  
Vol 57 (1) ◽  
pp. 56-68
Author(s):  
Fenquan Xie ◽  
Qianhong Wu ◽  
Lidong Wang ◽  
Wenzhou Xiao ◽  
Jingya Cao ◽  
...  

This study presents a new data set that contains zircon U–Pb ages, whole-rock geochemistry, and Hf isotopes of the Huhetaoergai granitic pluton in the northern Ya-Gan Fault zone, northern Alxa, China. The Huhetaoergai pluton is composed of medium- to coarse-grained biotite monzogranite and coarse-grained biotite monzogranite with K-feldspar megacrysts, with U–Pb zircon ages of 220.5 ± 1.9 Ma and 226.5 ± 2.4 Ma, respectively. Granitoids are I-type granites with high εHf(t) values (9–11.05). These features indicate that the granitoids were generated from partial melting of juvenile crust and experienced an obvious fractional crystallization process. We speculate that the granitoids of the Huhetaoergai pluton were formed in an intraplate extensional environment during the post-collision process, indicating a crustal stretching and thinning event in the northern Ya-Gan Fault zone.


2017 ◽  
Vol 13 (4) ◽  
pp. 676-679
Author(s):  
Shafirah Samsuri ◽  
Nurul Aini Amran ◽  
Loh Jia Zheng ◽  
Muhammad Muhaimin Mohd Bakri

In the middle of the era of technology and fast-growing industry nowadays, biodiesel (methyl ester) has been identified as a sustainable fuel to replace petroleum. Hence, the separation and purification of the methyl ester after the trans-esterification process is essential since the purification of methyl ester is compulsory for the fuel industry in order to fulfill the strict global standard particulars for methyl ester. One of the current method used for separation and purification of methyl ester is called wet washing technology. However, this technology has its own drawbacks such as huge amount of water consumption as well as high cost for the wastewater treatment process. Due to these drawbacks, fractional crystallization process is proposed in order to save water and minimize the time consumed for the process of separation and purification of methyl ester. Fractional crystallization is a process that involved a solid-liquid separation where the process takes place in a crystallizer. In this process, methyl ester was separated from the glycerol based on their differences in term of melting point of the components. By observing the layer formation of the components, the effect of cooling time and coolant temperature on the performance of separation and purification of methyl ester by fractional crystallization process were studied. The purified methyl ester obtained was placed in a gas chromatographer in order to test the purity of methyl ester and to evaluate the efficiency of the process based on two parameters that has been investigated which are effective partition constant (K) and concentration efficiency (Eff). It was found that to achieve highest effectiveness of fractional crystallization system and highest concentration efficiency where K and Eff are 0.51 and 47.71%, respectively, the fractional crystallization must operate at coolant temperature range of -10 to -12ºC and cooling time range of 30 to 35 minutes.


2014 ◽  
Vol 362 ◽  
pp. 281-287 ◽  
Author(s):  
Huan Zhou ◽  
Yanjuan Bao ◽  
Xiaoqin Bai ◽  
Ruoxin Ma ◽  
Lisha Huangfu ◽  
...  

Author(s):  
Rita da Cunha Leal Menezes ◽  
Herbet Conceição ◽  
Maria de Lourdes da Silva Rosa ◽  
Marco Antonio Galarza ◽  
Débora Correia Rios ◽  
...  

O Stock Nefelina-Sienítico Rio Pardo se localiza na porção sul do conjunto de intrusões alcalinas que constitui a Província Alcalina do Sul do Estado da Bahia. Esse corpo aflora numa área de 46 km2, sendo constituído por sienito, sienito com nefelina, nefelina sienito e sodalita sienito. A idade Pb-Pb obtida em monocristal de zircão para esse stock foi de 725 ± 2 Ma, a qual se insere no intervalo de idades para o magmatismo da parte sul dessa província alcalina (732 Ma a 720 Ma). Os dados litoquímicos obtidos para esse stock o posicionam na suíte alcalina subsaturada em SiO2 da Província Alcalina do Sul do Estado da Bahia. Os conteúdos de elementos traços asseguram sua afinidade anorogênica. Sua evolução, controlada por cristalização fracionada, se marca por acentuado enriquecimento em Na2O (até 15%) e Al2O3 (até 25%) e marcantes decréscimos em SiO2 (63% a 45%) e Elementos Terras Raras.Palavras-chave: nefelina sienito, idade Pb-Pb, Rio Pardo, BahiaABSTRACT: THE RIO PARDO NEPHELINE-SYENITIC STOCK, SOUTH BAHIA ALKALINE PROVINCE. The Rio Pardo nepheline-syenitic intrusion is located in the southern sector of the South Bahia Alkaline Province. It crops out over an area of 46 km2 and consists of syenite, nepheline-bearing syenite, nepheline syenite and blue-sodalite syenite. The Pb-Pb single-zircon evaporation age of 725 ± 2 Ma obtained for the Rio Pardo stock is in agreement with the age range (732 Ma to 720 Ma) for the southern part of province. Lithochemical data provide evidence to consider the Rio Pardo stock as a body of the SiO2 sub-saturated alkaline suite of the South Bahia Alkaline Province. Trace element contents indicate anorogenic afinity and the stock evolution, controlled by a fractional crystallization process, resulted in an outstanding enrichment of Na2O (up to 15%) and Al2O3 (up to 25%), and an important depletion of SiO2 (63% to 45%) and Rare Earth Elements.Keywords: nepheline syenite, Pb-Pb age, Rio Pardo, Bahia State.,


2011 ◽  
Vol 62 (6) ◽  
pp. 547-562 ◽  
Author(s):  
Rahim Dabiri ◽  
Mohamad Emami ◽  
Habib Mollaei ◽  
Bin Chen ◽  
Mansor Abedini ◽  
...  

Quaternary post-collision alkaline volcanism NW of Ahar (NW Iran): geochemical constraints of fractional crystallization process Major and trace elements and Sr-Nd isotopic data are presented for the Quaternary alkaline volcanism NW of Ahar (NW Iran). The exposed rocks mainly consist of alkali basalts, trachybasalts, basaltic trachyandesites and trachyandesites. Alkali basalts and trachybasalts display microlithic porphyritic texture with phenocrysts of olivine, clinopyroxene, and plagioclase in microlithic groundmass. In the more evolved rocks (basaltic trachyandesites and trachyandesites), amphibole and biotite have appeared. Major and trace element abundances vary along continuous trends of decreasing MgO, TiO2, Fe2O3*, CaO, Co, Cr, V and Zn, and increasing K2O, Al2O3, Ba and Th with increasing SiO2. The Sr and Nd isotopic ratios vary from 0.704463 to 0.704921 and from 0.512649 to 0.512774, respectively. Alkali basalts with high 143Nd/144Nd ratio, low 87Sr/86Sr ratio and high MgO, Ni and Cr contents indicate that they were generated from relatively primitive magmas. Ba, Cr and La/Sm ratios versus Rb suggest that fractional crystallization of alkali basalts could have played a significant role in the formation of evolved rocks. Assimilation and fractional crystallization modelling, as well as Rb/Zr, Th/Yb and Ta/Yb ratios clearly indicate that crustal contamination accompanied by the fractional crystallization played an important role in petrogenesis of the trachyandesites. The small compositional differences between magma types, isotopic composition, mineralogy and nonlinear trends on Harker diagrams also indicate that magma mixing was not an essential process in the evolution of the Ahar magmas. Petrogenetic modelling has been used to constrain sources. Trace element ratio plots and REE modelling indicate that the alkali basalts were generated from a spinel-peridotite source via small degrees (~2.5%) of fractional melting.


2007 ◽  
Vol 34 (1) ◽  
pp. 77 ◽  
Author(s):  
MAURÍCIO PRADO ◽  
JOSÉ TADEU MAXIMINO MIRRAS FERRON ◽  
EVANDRO FERNANDES DE LIMA ◽  
ARTUR CEZAR BASTOS NETO ◽  
VITOR PAULO PEREIRA ◽  
...  

The important mineral deposits of the Pitinga Mine, in the Amazonian region are related to A-type granites intruded in the Iricoumé Group. The Europa granite is one of these A-type rocks, intruded in the Iricoumé Group, which is represented by subaerial vulcanoclastic rocks (crystal-rich ignimbrites, thin massive tuffs and siltic tufaceous arenites) and minor hipabissal rhyolites. The volcanic rocks were probably generated in a caldera environment. The Europa granite is an alkali-feldspar peralkaline granite (hipersolvus) without genetic relationship with to the volcanic rocks of the Iricoumé Group, but it could have been generated during the resurgence stages. The petrographic and geochemical data attest that fractional crystallization process was the principal mechanism during the crystallization, which led to the generation of two different granitic facies. The Nb soil anomalies overprinted on the more differentiated facies are related to the astrophillite weathering.


2004 ◽  
Vol 76 (4) ◽  
pp. 807-824 ◽  
Author(s):  
Amarildo S. Ruiz ◽  
Mauro C. Geraldes ◽  
João B. Matos ◽  
Wilson Teixeira ◽  
William R. Van Schumus ◽  
...  

Isotopic and chemical data of rocks from the Cachoeirinha suite provide new insights on the Proterozoic evolution of the Rio Negro/Juruena Province in SW Amazonian craton. Six U-Pb and Sm-Nd analyses in granitoid rocks of the Cachoeirinha suite yielded ages of 1587-1522 Ma and T DM model ages of 1.88-1.75 Ga (EpsilonNd values of -0.8 to +1.0). In addition, three post-tectonic plutonic rocks yielded U-Pb ages from 1485-1389 Ma (T DM of 1.77-1.74 Ga and EpsilonNd values from -1.3 to +1.7). Variations in major and trace elements of the Cachoeirinha suite rocks indicate fractional crystallization process and magmatic arc geologic setting. These results suggest the following interpretations: (1) The interval of 1590-1520 Ma represents an important magmatic activity in SW Amazonian craton. (2) T DM and arc-related chemical affinity supportthe hypothesis that the rocks are genetically associated with an east-dipping subduction zone under the older (1.79-1.74 Ga) continental margin. (3) The 1590-1520 Ma age of intrusive rocks adjacent to an older crust represents similar geological framework along the southern margin of Baltica, corroborating the hypothesis of tectonic relationship at that time.


2004 ◽  
Vol 36 (1) ◽  
pp. 568 ◽  
Author(s):  
L. Papadopoulou ◽  
G. Christofides ◽  
Α. Koroneos ◽  
M. Bröcker ◽  
T. Soldatos ◽  
...  

The Maronia pluton is the youngest of the Tertiary plutons that occurred in Thrace. Three rock groups have been distinguished: a basic, an intermediate and an acid one. Based on geochemical and isotopie characteristics, the basic group probably represents a magma that isotopically equilibrated with the intermediate group at a certain point of its evolution. The evolution of the intermediate group can be described by an assimilation-fractional crystallization process (AFC). The acid group represents crustai melts that are not genetically related to the basic and intermediate groups. The emplacement of the pluton is related to post-collisional extension resulting from the subduction of the African under the European plate. The magma source of the basic and intermediate group is considered to be a LI LE- and LREE-enriched subcontinental lithospheric mantle. The acid group has probably derived by the partial melting of crustai rocks and in particular, gneiss.


Sign in / Sign up

Export Citation Format

Share Document