convective parameterization scheme
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 923 (1) ◽  
pp. L15
Author(s):  
Xianyu Tan ◽  
Maxence Lefèvre ◽  
Raymond T. Pierrehumbert

Abstract Condensable species are crucial to shaping planetary climate. A wide range of planetary climate systems involve understanding nondilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in nondilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. In this work, we tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in postrunaway atmospheres. We show that the atmosphere is composed of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower, noncondensing region, and the horizontal temperature variation is small. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibits random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert is appropriate for handling the basic structure of atmospheres near the pure-steam limit but cannot capture gravity waves and their mixing which appear in 3D convection-resolving models.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1194
Author(s):  
Seung-Bu Park ◽  
Ji-Young Han

The convective parameterization scheme of the Korean Integrated Model (KIM) is tentatively modified to suppress grid-point storms in the Western Pacific Ocean. The KIM v3.2.11 suffers from the numerical problem that grid-point storms degrade forecasts in the tropical oceans and around the Korean Peninsula. Another convective parameterization scheme, the new Tiedtke scheme, is implemented in the KIM. The artificial storms are suppressed in the test version because the heating and drying tendencies of the new Tiedtke scheme are stronger than those of the default KIM Simplified Arakawa-Schubert (KSAS) scheme. Based on this comparison, the KSAS scheme is modified to strengthen its heating and drying tendencies by reducing the entrainment and detrainment rates. The modified KSAS scheme suppresses grid-point storms and thus decreases grid-scale precipitation in a summertime case simulation. Twenty 10-day forecasts with the default convection scheme (KSAS) and twenty forecasts with the modified scheme are conducted and compared with each other, confirming that the modified KSAS scheme successfully suppresses grid-point storms.


2021 ◽  
Author(s):  
Thanh Nguyen-Xuan ◽  
Sze Lok Lam ◽  
Filippo Giorgi ◽  
Erika Coppola ◽  
Graziano Giuliani ◽  
...  

Abstract This study evaluates the performance of the latest version of non-hydrostatic RegCM4 (RegCM4-NH) customized over two vast urban agglomerations in China (i.e., the Pearl River Delta, PRD, and the Yangtze River Delta, YRD). The analysis focuses on how the dynamical core (hydrostatic versus non-hydrostatic) employed in the driving mother domain simulation can affect the regional characteristics of temperature and precipitation patterns in the PRD and YRD regions simulated by a 4 km resolution nested RegCM4-NH. In addition, we assess the sensitivity of the 4 km model results to the use of a convective parameterization scheme (CPS), since the 4 km grid size can be considered as a gray-zone resolution at which deep convection is partially resolved and may still need to be parameterized. For mean temperature, a reasonable performance is shown by all simulations, with the summer season mean bias mostly less than ±1°C when averaged over the PRD and YRD. However, the simulated daily temperature distribution is excessively peaked around the median value, indicating a large probability concentrated on a small temperature range. Although the higher resolution slightly ameliorates this deficiency, the effect of the dynamical core and CPS tends to be marginal. Conversely, precipitation behaves quite differently across simulations. The driving forcing from the non-hydrostatic mother domain simulation helps to reduce a severe dry bias seen over the PRD due to a reduction in convection inhibition. Use of the Emanuel CPS also tends to intensify localized precipitation events over mountainous regions in connection with stronger ascending motions over topographical features. The higher resolution also improves the phase of the diurnal cycle of precipitation, both with and without the use of the CPS. In general, the performance of RegCM4-NH over the PRD and YRD is found to be best when driven by a non-hydrostatic mother domain simulation and when turning on the Emanuel CPS.


2021 ◽  
Author(s):  
Ting-Chen Chen ◽  
Man-Kong Yau ◽  
Daniel J. Kirshbaum

<p>     Slantwise convection and the associated release of conditional symmetric instability (CSI) have been recognized as important baroclinic processes. Recent climatological studies have highlighted its significant association with midlatitude cyclone activities, raising questions about whether large-scale models can resolve slantwise convection and whether it should be parameterized.</p><p>     To address this issue, the present study simulates isolated free moist slantwise convection in an initially statically stable environment using the 2D idealized, non-hydrostatic Weather Research and Forecasting (WRF) Model. We first examined the sensitivity of the slantwise convection to the cross-band grid spacing (Δy; varied from 40 to 1 km) and found that experiments with ∆y> 5 km fail to capture the band dynamics and larger-scale feedbacks robustly and thus require parameterization. As most of the current convective parameterization schemes target upright convection in a local column, we implemented an additional 2D slantwise convective parameterization scheme and evaluated its impact for coarse-grid runs.</p><p>     The slantwise convective parameterization scheme operates along a sloped trajectory on a horizontally-variant cross section perpendicular to the local thermal wind, adjusting the environment toward a natural state to CSI within a given time scale. With the addition of the slantwise convective parameterization scheme, significant improvements are found in precipitation and the strength of the slantwise updraft, bringing the coarser-grid (∆y=40 km) simulation closer to the finer-grid (converged) results than its counterpart with only the upright convection scheme. After testing the slantwise convective parameterization scheme under idealized frameworks, we will further apply it to regional models to evaluate its benefit to the weather forecasting in real cases.</p>


2018 ◽  
Vol 75 (9) ◽  
pp. 3139-3157 ◽  
Author(s):  
Simon C. Peatman ◽  
John Methven ◽  
Steven J. Woolnough

Abstract The rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.


Sign in / Sign up

Export Citation Format

Share Document