eccentricity orbit
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 625 ◽  
pp. A16 ◽  
Author(s):  
Matías I. Jones ◽  
Rafael Brahm ◽  
Nestor Espinoza ◽  
Songhu Wang ◽  
Avi Shporer ◽  
...  

We report on the confirmation of a transiting giant planet around the relatively hot (Teff = 6801 ± 76 K) star HD 2685, whose transit signal was detected in Sector 1 data of NASA’s TESS mission. We confirmed the planetary nature of the transit signal using Doppler velocimetric measurements with CHIRON, CORALIE, and FEROS, as well as using photometric data obtained with the Chilean-Hungarian Automated Telescope and the Las Cumbres Observatory. From the joint analysis of photometry and radial velocities, we derived the following parameters for HD 2685 b: P = 4.12688−0.00004+0.00005 days, e = 0.091−0.047+0.039, MP = 1.17 ± 0.12 MJ, and RP =1.44 ± 0.05 RJ. This system is a typical example of an inflated transiting hot Jupiter in a low-eccentricity orbit. Based on the apparent visual magnitude (V = 9.6 mag) of the host star, this is one of the brightest known stars hosting a transiting hot Jupiter, and it is a good example of the upcoming systems that will be detected by TESS during the two-year primary mission. This is also an excellent target for future ground- and space-based atmospheric characterization as well as a good candidate for measuring the projected spin-orbit misalignment angle through the Rossiter–McLaughlin effect.


2019 ◽  
Vol 621 ◽  
pp. A94 ◽  
Author(s):  
L. Ducci ◽  
C. Malacaria ◽  
P. Romano ◽  
L. Ji ◽  
E. Bozzo ◽  
...  

AXJ0049.4–7323 (SXP 756) is a Be/X-ray binary that shows an unusual and poorly understood optical variability that consists of periodic and bright optical outbursts, simultaneous with X-ray outbursts, characterised by a highly asymmetric profile. The periodicity of the outbursts is thought to correspond to the orbital period of the neutron star. To understand the peculiar behaviour shown by this source, we performed the first multi-wavelength monitoring campaign during the periastron passage of December 2017. The monitoring lasted for about 37 days and consisted of X-ray, near-ultraviolet, and optical data from the Neil Gehrels Swift Observatory, the optical I band from the OGLE survey, and spectroscopic observations of the Hα line performed with the 3.9 m Anglo-Australian Telescope. These observations revealed AXJ0049.4–7323 during an anomalous outburst having remarkably different properties compared to the previous ones. In the I band, it showed a longer rise timescale (∼60 days instead of 1–5 days) and a longer decay timescale. At the peak of the outburst, it showed a sudden increase in luminosity in the I band, corresponding to the onset of the X-ray outburst. The monitoring of the Hα emission line showed a fast and highly variable profile composed of three peaks with variable reciprocal brightness. To our knowledge, this is the second observation of a variable three-peak Hα profile of a Be/X-ray binary, after A0535+26. We interpreted these results as a circumstellar disc warped by tidal interactions with the neutron star in a high eccentricity orbit during its periastron passage. The fast jump in optical luminosity at the peak of the outburst and the previous asymmetric outbursts might be caused by the reprocessing of the X-ray photons in the circumstellar disc or the tidal displacement of a large amount of material from the circumstellar disc or the outer layers of the donor star during the periastron passage of the neutron star, which led to an increase in size of the region emitting in the I band. Further multi-wavelength observations are necessary to discriminate among the different scenarios proposed to explain the puzzling optical and X-ray properties of AXJ0049.4–7323.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Martin Lara ◽  
Juan F. San-Juan ◽  
Luis M. López-Ochoa

Classical procedures for designing Earth’s mapping missions rely on a preliminary frozen-eccentricity orbit analysis. This initial exploration is based on the use of zonal gravitational models, which are frequently reduced to a simpleJ2-J3analysis. However, theJ2-J3model may not be accurate enough for some applications. Furthermore, lower order truncations of the geopotential are known to fail in describing the behavior of elliptic frozen orbits properly. Inclusion of a higher degree geopotential, which also takes into account the short-period effects of tesseral harmonics, allows for the precise computation of frozen-eccentricity, low Earth orbits that show smaller long-period effects in long-term propagations than those obtained when using the zonal model design.


Author(s):  
M. Cuntz ◽  
B. Quarles ◽  
J. Eberle ◽  
A. Shukayr

AbstractThe aim of our study is to investigate the possibility of habitable moons orbiting the giant planet HD 23079b, a Jupiter-mass planet, which follows a low-eccentricity orbit in the outer region of HD 23079’s habitable zone. We show that HD 23079b is able to host habitable moons in prograde and retrograde orbits, as expected, noting that the outer stability limit for retrograde orbits is increased by nearly 90% compared with that of prograde orbits, a result consistent with previous generalised studies. For the targeted parameter space, it was found that the outer stability limit for habitable moons varies between 0.05236 and 0.06955 AU (prograde orbits) and between 0.1023 and 0.1190 AU (retrograde orbits), depending on the orbital parameters of the Jupiter-type planet if a minimum mass is assumed. These intervals correspond to 0.306 and 0.345 (prograde orbits) and 0.583 and 0.611 (retrograde orbits) of the planet's Hill radius. Larger stability limits are obtained if an increased value for the planetary mass mp is considered; they are consistent with the theoretically deduced relationship of m1/3p. Finally, we compare our results with the statistical formulae of Domingos, Winter, & Yokoyama, indicating both concurrence and limitations.


2004 ◽  
Vol 213 ◽  
pp. 11-24 ◽  
Author(s):  
Geoffrey W. Marcy ◽  
R. Paul Butler ◽  
Steven S. Vogt ◽  
Debra A. Fischer

Examination of ∼2000 sun–like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ∼200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05–5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News & summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth–mass planets remain undetectable, but space–based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade.The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter–mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth–mass planets. These observations and the theory of planet formation suggests that single sun–like stars commonly harbor earth–sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non–circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter–like planets may reside at 5–10 AU from stars, not easily detectable at present. The sunlike star 55 Cancri harbors a planet of 4–10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward.To date, 10 multiple–planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are “hierarchical”, consisting of widely separated orbits. These two system architectures probably result from gravitational interactions among the planets and between the planets and the proto-planetary disk out of which they formed.


1980 ◽  
Vol 102 (3) ◽  
pp. 320-331 ◽  
Author(s):  
C. H. T. Pan

By allowing the film pressure to assume some subambient value and by allowing natural boundaries of the film to form in the unloaded region, the short-bearing theory of Ocvirk and Dubois is extended to include a detailed description of the cavitation zone. Two alternative cavitation configurations are shown to be possible, rendering different eccentricity (orbit size), attitude angle (phase), for the same load and minimum film pressure. The first configuration features an enclosed cavity maintained at a subambient level and is called “0” cavitation, which is crudely emulated by the conventional “half-film” approximation. The second configuration features ambient level side cavities, the boundaries of which are drawn inside the bearing ends by a sub-cavity film pressure, and is called “I” cavitation. The “I” cavitation, which is initiated by the aggregation of entrained bubbles in the ambient fluid, can present itself in the form of multiple striations causing substantial loss of load capacity.


Sign in / Sign up

Export Citation Format

Share Document