hcfc 142b
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 1)

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 509-525
Author(s):  
Pingyang Li ◽  
Toste Tanhua

Abstract. This study evaluates the potential usefulness of the halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14, and PFC-116 as oceanographic transient tracers to better constrain ocean ventilation processes. We do this mainly in terms of four aspects of the characteristics of the potential tracers: input function (including atmospheric history and historical surface saturation), seawater solubility, feasibility of measurement, and stability in seawater; of these, atmospheric history and seawater solubility have been investigated in previous work. For the latter two aspects, we collected seawater samples and modified an established analytical technique for the Medusa–Aqua system to simultaneously measure these compounds. HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, and HFC-125 have been measured in depth profiles in the Mediterranean Sea for the first time and for reproducibility in the Baltic Sea. We found that the historical surface saturation of halogenated transient tracers in the Mediterranean Sea is estimated to have been nearly constant at 94 % based on historical data. Of the investigated compounds, HCFC-142b, HCFC-141b, and HFC-134a are found to currently be the most promising transient tracers in the ocean. The compounds that have the greatest potential as future tracers are PFC-14 and PFC-116, mainly hampered by the low solubility in seawater that creates challenging analytical conditions, i.e., low concentrations. HCFC-22 is found to be likely unstable in warm seawater, which compromises the potential as an oceanic transient tracer, although it is possibly useful in colder water. For the compounds HFC-125 and HFC-23, we were not able to fully evaluate their potential as tracers due to inconclusive results, especially regarding their solubility and stability in seawater, but also with regard to potential analytical challenges. On the other hand, HFC-125, HFC-23, and HCFC-22 might not need to be considered because there are alternative tracers with similar input histories that are better suited as transient tracers.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 377 ◽  
Author(s):  
Wei Yu ◽  
Wenfeng Han ◽  
Yongnan Liu ◽  
Jiaqin Lu ◽  
Hong Yang ◽  
...  

BaClxFy as well as BaF2 and BaClF catalysts were prepared by solid-state reaction at room temperature with Ba(OH)2 as the precursor and NH4F/NH4Cl as the F and Cl sources. The catalysts were applied for the dehydrochlorination of 1-chloro-1,1-difluoroethane to vinylidene fluoride at 350 °C. The industrial manufacture of vinylidene fluoride (VDF) is carried out at 600–700 °C, whereas the BaClxFy catalysts provided a promising pathway to produce VDF at much lower temperatures. Unfortunately, the selectivity of VDF over BaF2 decreased from 94% to 84% along with the deactivation of the BaF2 catalyst monotonically. In the presence of small amounts of Cl in BaF2, stabilized selectivity was achieved. Over BaCl0.05F0.95, BaCl0.1F0.9 and BaCl0.25F0.75, no decrease in VDF selectivity was observed. Clearly, the presence of small amounts Cl during solid-state preparation inhibited the growth of BaF2 crystalline significantly. Far smaller particles were achieved. The particle size, or more precisely, the crystal size of the barium catalyst played a major role in the catalytic performance. In addition to the crystal growth, the presence of small amounts of Cl during catalyst preparation changed the chemical state of Ba, and therefore the adsorption and activation of the C–Cl bond for HCFC-142b were altered.


2019 ◽  
Author(s):  
Pingyang Li ◽  
Toste Tanhua

Abstract. This study evaluates the potential usefulness of the halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 as the time-dependent oceanographic transient tracers in order to better constrain ocean ventilation processes. We collected seawater samples and improved on an established analytical technique, the Medusa-Aqua system, to simultaneous measure them, and estimate their stability in seawater following previous work on the atmospheric history and solubility. HCFC-22, HCFC-141b, HCFC-142b, HFC-134a and HFC-125 have been measured in profiles in the Mediterranean Sea for the first time. We estimated the historic surface saturation anomalies of transient tracers in the Mediterranean Sea by evaluating the historic record. Their stability in seawater was estimated by analysis of their ocean partial lifetimes, seawater surface saturations and concentrations compared to CFC-12 measurements by a well-established technique. Of the investigated compounds, HCFC-141b was found to be the most promising transient tracer in the ocean; it fulfills several essential requirements by virtue of well-documented atmospheric history, established seawater solubility, inertness in seawater and feasible measurements and indication of conservative behavior in seawater by having mean ages in agreement to be expected from both CFC-12 and SF6 observations. However, more information on degradation is needed to further identify its stability in seawater, and HCFC-141b has restrictions on production and consumption imposed by the Montreal Protocol leading to its decreasing atmospheric mole fractions since 2017. The most potential oceanic transient tracers were PFC-14 and PFC-116 due to their stability in seawater, the long and well-documented atmospheric concentrations histories and constructed seawater solubility functions, although the low solubility in seawater creates challenging measurement conditions (i.e. low concentration). Measurements of PFCs can be potentially improved by modifying the Medusa-Aqua analytical system. With the exception of providing the information on the novel potential alternative oceanic transient tracers, this study also provides a method on how to evaluate the feasibility for a compound to be a transient tracer in the ocean.


Ocean Science ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 33-60 ◽  
Author(s):  
Pingyang Li ◽  
Jens Mühle ◽  
Stephen A. Montzka ◽  
David E. Oram ◽  
Benjamin R. Miller ◽  
...  

Abstract. We present consistent annual mean atmospheric histories and growth rates for the mainly anthropogenic halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, which are all potentially useful oceanic transient tracers (tracers of water transport within the ocean), for the Northern and Southern Hemisphere with the aim of providing input histories of these compounds for the equilibrium between the atmosphere and surface ocean. We use observations of these halogenated compounds made by the Advanced Global Atmospheric Gases Experiment (AGAGE), the Scripps Institution of Oceanography (SIO), the Commonwealth Scientific and Industrial Research Organization (CSIRO), the National Oceanic and Atmospheric Administration (NOAA) and the University of East Anglia (UEA). Prior to the direct observational record, we use archived air measurements, firn air measurements and published model calculations to estimate the atmospheric mole fraction histories. The results show that the atmospheric mole fractions for each species, except HCFC-141b and HCFC-142b, have been increasing since they were initially produced. Recently, the atmospheric growth rates have been decreasing for the HCFCs (HCFC-22, HCFC-141b and HCFC-142b), increasing for the HFCs (HFC-134a, HFC-125, HFC-23) and stable with little fluctuation for the PFCs (PFC-14 and PFC-116) investigated here. The atmospheric histories (source functions) and natural background mole fractions show that HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125 and HFC-23 have the potential to be oceanic transient tracers for the next few decades only because of the recently imposed bans on production and consumption. When the atmospheric histories of the compounds are not monotonically changing, the equilibrium atmospheric mole fraction (and ultimately the age associated with that mole fraction) calculated from their concentration in the ocean is not unique, reducing their potential as transient tracers. Moreover, HFCs have potential to be oceanic transient tracers for a longer period in the future than HCFCs as the growth rates of HFCs are increasing and those of HCFCs are decreasing in the background atmosphere. PFC-14 and PFC-116, however, have the potential to be tracers for longer periods into the future due to their extremely long lifetimes, steady atmospheric growth rates and no explicit ban on their emissions. In this work, we also derive solubility functions for HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 in water and seawater to facilitate their use as oceanic transient tracers. These functions are based on the Clark–Glew–Weiss (CGW) water solubility function fit and salting-out coefficients estimated by the poly-parameter linear free-energy relationships (pp-LFERs). Here we also provide three methods of seawater solubility estimation for more compounds. Even though our intention is for application in oceanic research, the work described in this paper is potentially useful for tracer studies in a wide range of natural waters, including freshwater and saline lakes, and, for the more stable compounds, groundwaters.


2018 ◽  
Author(s):  
Pingyang Li ◽  
Jens Mühle ◽  
Stephen A. Montzka ◽  
David E. Oram ◽  
Benjamin R. Miller ◽  
...  

Abstract. We present consistent annual mean atmospheric histories and growth rates for the mainly anthropogenic halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, all potentially useful oceanic transient tracers (tracers of water transport within the ocean), for the Northern and Southern Hemisphere with the aim of providing input histories for these compounds. Where available we utilize observations of the halogenated compounds made by the Advanced Global Atmospheric Gases Experiment (AGAGE), National Oceanic and Atmospheric Administration (NOAA) and University of East Anglia (UEA). Prior to the direct observational record we estimated the atmospheric history concentrations from other sources such as archived air measurements, firn air measurements and published model calculations. The results show that the atmospheric mole fractions for each species have been increasing since they were initially produced. Recently, their atmospheric growth rates are decreasing for HCFCs (HCFC-22, HCFC-141b and HCFC-142b), increasing for HFCs (HFC-134a, HFC-125, HFC-23), and stable with small fluctuation for PFCs (PFC-14 and PFC-116). The atmospheric histories (source functions) and natural background values show that HCFCs (HCFC-22, HCFC-141b and HCFC-142b) and HFCs (HFC-134a, HFC-125 and HFC-23) have the potential to be oceanic transient tracers for the next few decades only because of the recently imposed bans on production. When the atmospheric histories of the compounds are not monotonically changing, the equilibrium atmospheric concentrations (and ultimately the age associated with that concentration) calculated from their concentration in the ocean are not unique, reducing the potential as transient tracer. Moreover, HFCs have potential to be oceanic transient tracers for a longer period in the future than HCFCs as the growth rates of HFCs are increasing and those of HCFCs are decreasing in the background atmosphere. PFC-14 and PFC-116, however, have the potential to be the tracers for longer period in the future thanks to their extremely long lifetimes, steady atmospheric growth rates and no explicit ban. In this work, we also derive solubility functions for HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 in seawater to facilitate the use as oceanic transient tracers. These functions are based on the Clark-Glew-Weiss (CGW) water solubility functions fit and salting-out coefficients estimated by the poly-parameter linear free energy relationships (pp-LFERs). Here we also provide three methods of seawater solubility estimation for more compounds.


Sign in / Sign up

Export Citation Format

Share Document