accuracy stress
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roger Ratcliff ◽  
Inhan Kang

AbstractRafiei and Rahnev (2021) presented an analysis of an experiment in which they manipulated speed-accuracy stress and stimulus contrast in an orientation discrimination task. They argued that the standard diffusion model could not account for the patterns of data their experiment produced. However, their experiment encouraged and produced fast guesses in the higher speed-stress conditions. These fast guesses are responses with chance accuracy and response times (RTs) less than 300 ms. We developed a simple mixture model in which fast guesses were represented by a simple normal distribution with fixed mean and standard deviation and other responses by the standard diffusion process. The model fit the whole pattern of accuracy and RTs as a function of speed/accuracy stress and stimulus contrast, including the sometimes bimodal shapes of RT distributions. In the model, speed-accuracy stress affected some model parameters while stimulus contrast affected a different one showing selective influence. Rafiei and Rahnev’s failure to fit the diffusion model was the result of driving subjects to fast guess in their experiment.


Author(s):  
Takumi Uchihara ◽  
Stuart Webb ◽  
Kazuya Saito ◽  
Pavel Trofimovich

Abstract Eighty Japanese learners of English as a foreign language encountered 40 target words in one of four experimental conditions (three encounters, six encounters, three encounters with talker variability, and six encounters with talker variability). A picture-naming test was conducted three times (pretest, immediate posttest, and delayed posttest) and elicited speech samples were scored in terms of form-meaning connection (spoken form recall) and word stress accuracy (stress placement accuracy and vowel duration ratio). Results suggested that frequency of exposure consistently promoted the recall of spoken forms, whereas talker variability was more closely related to the enhancement of word stress accuracy. These findings shed light on how input quantity (frequency) and quality (variability) affect different stages of lexical development and provide implications for vocabulary teaching.


2020 ◽  
pp. 62-66
Author(s):  
G.V. Muratkin ◽  
V.A. Sarafanova

A method for dressing of non-rigid parts by surface plastic deformation is proposed, which is based on a change in the stress-strain state of the billet during finishing and hardening processing. Keywords non-rigid shaft, dressing, surface plastic deformation, technological residual deformation, accuracy, stress. [email protected]


2019 ◽  
Vol 17 (09) ◽  
pp. 1950065 ◽  
Author(s):  
Xuewei Liu ◽  
Quansheng Liu ◽  
Jun He ◽  
Fangzheng Yu

To investigate crack initiation and propagation of rock mass under coupled thermo-mechanical (TM) condition, a two-dimensional coupled TM model based on the numerical manifold method (NMM) is proposed, considering the effect of thermal damage on the rock physical properties and stress on the heat conductivity. Then, the NMM, using empirical strength criteria as the crack propagation critical criterion and physical cover as the minimum failure element, was extended for cracking process simulation. Furthermore, a high-order cover function was used to improve the calculation accuracy of stress. Therefore, the proposed method consists of three parts and has a high accuracy for simulating the cracking process in the rock mass under the coupled TM condition. The ability of the proposed model for high accuracy stress, crack propagation, and thermally-induced cracking simulation was verified by three examples. Finally, the proposed method was applied to simulate the stability of a hypothetical nuclear waste repository. Based on the outcome of this study, the application of NMM can be extended to study rock failure induced by multi-field coupling effect in geo-materials.


2017 ◽  
Vol 8 (1) ◽  
pp. 20170008 ◽  
Author(s):  
Ali C. Akyildiz ◽  
Lambert Speelman ◽  
Bas van Velzen ◽  
Raoul R. F. Stevens ◽  
Antonius F. W. van der Steen ◽  
...  

Atherosclerotic plaque rupture is recognized as the primary cause of cardiac and cerebral ischaemic events. High structural plaque stresses have been shown to strongly correlate with plaque rupture. Plaque stresses can be computed with finite-element (FE) models. Current FE models employ homogeneous material properties for the heterogeneous atherosclerotic intima. This study aimed to evaluate the influence of intima heterogeneity on plaque stress computations. Two-dimensional FE models with homogeneous and heterogeneous intima were constructed from histological images of atherosclerotic human coronaries ( n = 12). For homogeneous models, a single stiffness value was employed for the entire intima. For heterogeneous models, the intima was subdivided into four clusters based on the histological information and different stiffness values were assigned to the clusters. To cover the reported local intima stiffness range, 100 cluster stiffness combinations were simulated. Peak cap stresses (PCSs) from the homogeneous and heterogeneous models were analysed and compared. By using a global variance-based sensitivity analysis, the influence of the cluster stiffnesses on the PCS variation in the heterogeneous intima models was determined. Per plaque, the median PCS values of the heterogeneous models ranged from 27 to 160 kPa, and the PCS range varied between 43 and 218 kPa. On average, the homogeneous model PCS values differed from the median PCS values of heterogeneous models by 14%. A positive correlation ( R 2 = 0.72) was found between the homogeneous model PCS and the PCS range of the heterogeneous models. Sensitivity analysis showed that the highest main sensitivity index per plaque ranged from 0.26 to 0.83, and the average was 0.47. Intima heterogeneity resulted in substantial changes in PCS, warranting stress analyses with heterogeneous intima properties for plaque-specific, high accuracy stress assessment. Yet, computations with homogeneous intima assumption are still valuable to perform sensitivity analyses or parametric studies for testing the effect of plaque geometry on PCS. Moreover, homogeneous intima models can help identify low PCS, stable type plaques with thick caps. Yet, for thin cap plaques, accurate stiffness measurements of the clusters in the cap and stress analysis with heterogeneous cap properties are required to characterize the plaque stability.


2013 ◽  
Vol 347-350 ◽  
pp. 3786-3791
Author(s):  
Gang He ◽  
Hao Gu ◽  
Zheng Yu Pan

The stress calculated method of isogeometric structure analysis is studied in this paper. Based on the fact that stress calculated values at Guass integral points are more accurate than other locations, the stress field can be rebuilt by fitting the Guass integral points stress value from the displacement field, and two methods including stress interpolation and least square fit are presented to reduce the stress error. The example of infinite plate with circular hole is used to illustrate our methods performance, and the results show that our methods can improve the stress calculate accuracy notable.


2013 ◽  
Vol 09 (01) ◽  
pp. 1350007 ◽  
Author(s):  
SIDDHARTH S. RAUTARAY ◽  
ANUPAM AGRAWAL

With the increasing role of computing devices, facilitating natural human computer interaction (HCI) will have a positive impact on their usage and acceptance as a whole. For long time, research on HCI has been restricted to techniques based on the use of keyboard, mouse, etc. Recently, this paradigm has changed. Techniques such as vision, sound, speech recognition allow for much richer form of interaction between the user and machine. The emphasis is to provide a natural form of interface for interaction. Gestures are one of the natural forms of interaction between humans. As gesture commands are found to be natural for humans, the development of gesture control systems for controlling devices have become a popular research topic in recent years. Researchers have proposed different gesture recognition systems which act as an interface for controlling the applications. One of the drawbacks of present gesture recognition systems is application dependence which makes it difficult to transfer one gesture control interface into different applications. This paper focuses on designing a vision-based hand gesture recognition system which is adaptive to different applications thus making the gesture recognition systems to be application adaptive. The designed system comprises different processing steps like detection, segmentation, tracking, recognition, etc. For making the system as application-adaptive, different quantitative and qualitative parameters have been taken into consideration. The quantitative parameters include gesture recognition rate, features extracted and root mean square error of the system while the qualitative parameters include intuitiveness, accuracy, stress/comfort, computational efficiency, user's tolerance, and real-time performance related to the proposed system. These parameters have a vital impact on the performance of the proposed application adaptive hand gesture recognition system.


Sign in / Sign up

Export Citation Format

Share Document