scholarly journals THE CORRESPONDENCE OF THE EREZ-ROSEN SOLUTION WITH THE HARTLE-THORNE SOLUTION IN THE LIMITING CASE OF ~ࡽ AND ~ࡹ૛

Author(s):  
K. Boshkayev ◽  
◽  
A. Malybayev ◽  
H. Quevedo ◽  
G. Nurbakyt ◽  
...  

The link between exterior solutions to the Einstein gravitational field equations such as the exact Erez-Rosen metric and approximate Hartle-Thorne metric is established here for the static case in the limit of linear mass quadrupole moment (Q) and second order terms in total mass (M). To this end, the Geroch-Hansen multipole moments are calculated for the Erez-Rosen and Hartle-Thorne solutions in order to find the relationship among the parameters of both metrics. The coordinate transformations are sought in a general form with two unknown functions in the corresponding limit of ~Q and ~M^2. By employing the perturbation theory, the approximate Erez-Rosen metric is written in the same coordinates as the Hartle-Thorne metric. By equating the radial and azimuthal components of the metric tensor of both solutions the sought functions are found in a straightforward way. It is shown that the approximation ~Q and ~M^2, which is used throughout the article, is physical and suitable for solving most problems of celestial mechanics in post-Newtonian physics. This approximation does not require the use of the Zipoy-Voorhees transformation, which is a necessary strict mathematical requirement in the ~Q approximation, i.e. when no other approximations are made. This implies that the explicit form of the coordinate transformations depends entirely on the approximation that is adopted in each particular case. The results obtained here are in agreement with the previous results in the literature and can be applied to different astrophysical goals. The paper pursues not only pure scientific, but also academic purposes and can be used as an auxiliary and additional material to the special courses of general theory of relativity, celestial mechanics and relativistic astrophysics.

2019 ◽  
Vol 950 (8) ◽  
pp. 2-11
Author(s):  
S.A. Tolchelnikova ◽  
K.N. Naumov

The Euclidean geometry was developed as a mathematical system due to generalizing thousands years of measurements on the plane and spherical surfaces. The development of celestial mechanics and stellar astronomy confirmed its validity as mathematical principles of natural philosophy, in particular for studying the Solar System bodies’ and Galaxy stars motions. In the non-Euclidean geometries by Lobachevsky and Riemann, the third axiom of modern geometry manuals is substituted. We show that the third axiom of these manuals is a corollary of the Fifth Euclidean postulate. The idea of spherical, Riemannian space of the Universe and local curvatures of space, depending on body mass, was inculcated into celestial mechanics, astronomy and geodesy along with the theory of relativity. The mathematical apparatus of the relativity theory was created from immeasurable quantities


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This chapter attempts to formulate a consistent extension of the theory of general relativity. The starting point of the general theory of relativity is the recognition of the unity of gravitation and inertia (principle of equivalence). From this principle, it follows that the properties of “empty space” were to be represented by a symmetrical tensor expressed in the theory. The principle of equivalence, however, does not give any clue as to what may be the more comprehensive mathematical structure on which to base the treatment of the total field comprising the entire physical reality. As such, this chapter considers the problem of how to find a field structure which is a natural generalization of the symmetrical tensor as well as a system of field equations for this structure which represent a natural generalization of certain equations of pure gravitation.


1985 ◽  
Vol 38 (4) ◽  
pp. 547 ◽  
Author(s):  
Yun-Kau Lau

In an attempt to reconcile the large number hypothesis (LNH) with Einstein's theory of gravitation, a tentative generalization of Einstein's field equations with time-dependent cosmological and gravitational constants is proposed. A cosmological model consistent with the LNH is deduced. The coupling formula of the cosmological constant with matter is found, and as a consequence, the time-dependent formulae of the cosmological constant and the mean matter density of the Universe at the present epoch are then found. Einstein's theory of gravitation, whether with a zero or nonzero cosmological constant, becomes a limiting case of the new generalized field equations after the early epoch.


1963 ◽  
Vol 59 (4) ◽  
pp. 739-741 ◽  
Author(s):  
J. Hyde

It was shown by Birkhoff ((1), p. 253) that every spherically symmetric solution of the field equations of general relativity for empty space,may be reduced, by suitable coordinate transformations, to the static Schwarzschild form:where m is a constant. This result is known as Birkhoff's theorem and excludes the possibility of spherically symmetric gravitational radiation. Different proofs of the theorem have been given by Eiesland(2), Tolman(3), and Bonnor ((4), p. 167).


2006 ◽  
Vol 21 (11) ◽  
pp. 899-905 ◽  
Author(s):  
N. KIRIUSHCHEVA ◽  
S. V. KUZMIN

It is shown that if general covariance is to be preserved (i.e. a coordinate system is not fixed) the well-known triviality of the Einstein field equations in two dimensions is not a sufficient condition for the Einstein–Hilbert action to be a total divergence. Consequently, a Hamiltonian formulation is possible without any modification of the two-dimensional Einstein–Hilbert action. We find the resulting constraints and the corresponding gauge transformations of the metric tensor.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


Sign in / Sign up

Export Citation Format

Share Document