Facet-specific oxidation of Mn(II) and heterogeneous growth of manganese (oxyhydr)oxides on hematite nanoparticles

Author(s):  
Jing Liu ◽  
Sayako Inoué ◽  
Runliang Zhu ◽  
Hongping He ◽  
Michael F. Hochella
2019 ◽  
Vol 9 (2) ◽  
pp. 151-162
Author(s):  
Shveta Acharya ◽  
Arun Kumar Sharma

Background: The metal ions play a vital role in a large number of widely differing biological processes. Some of these processes are quite specific in their metal ion requirements. In that only certain metal ions, in specific oxidation states, can full fill the necessary catalytic or structural requirement, while other processes are much less specific. Objective: In this paper we report the binding of Mn (II), Ni (II) and Co (II) with albumin are reported employing spectrophotometric and pH metric method. In order to distinguish between ionic and colloidal linking, the binding of metal by using pH metric and viscometric methods and the result are discussed in terms of electrovalent and coordinate bonding. Methods: The binding of Ni+2, Co+2 and Mn+2 ions have been studied with egg protein at different pH values and temperatures by the spectrometric technique. Results: The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found to be at the maximum at lower pH and at lower temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with these metal ions. Statistical effects seem to be more significant at lower Ni+2, Co+2 and Mn+2 ions concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant. Conclusion: The pH metric as well as viscometric data provided sufficient evidence about the linking of cobalt, nickel and manganese ions with the nitrogen groups of albumin. From the nature and height of curves in the three cases it may be concluded that nickel ions bound strongly while the cobalt ions bound weakly.


Author(s):  
Kumar Rajendran ◽  
Latha Pujari ◽  
Madhuri Krishnamoorthy ◽  
Shampa Sen ◽  
Divya Dharmaraj ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3719
Author(s):  
Ana Catarina Sousa ◽  
Lígia O. Martins ◽  
M. Paula Robalo

Laccases are multicopper oxidases that have shown a great potential in various biotechnological and green chemistry processes mainly due to their high relative non-specific oxidation of phenols, arylamines and some inorganic metals, and their high redox potentials that can span from 500 to 800 mV vs. SHE. Other advantages of laccases include the use of readily available oxygen as a second substrate, the formation of water as a side-product and no requirement for cofactors. Importantly, addition of low-molecular-weight redox mediators that act as electron shuttles, promoting the oxidation of complex bulky substrates and/or of higher redox potential than the enzymes themselves, can further expand their substrate scope, in the so-called laccase-mediated systems (LMS). Laccase bioprocesses can be designed for efficiency at both acidic and basic conditions since it is known that fungal and bacterial laccases exhibit distinct optimal pH values for the similar phenolic and aromatic amines. This review covers studies on the synthesis of five- and six-membered ring heterocyclic cores, such as benzimidazoles, benzofurans, benzothiazoles, quinazoline and quinazolinone, phenazine, phenoxazine, phenoxazinone and phenothiazine derivatives. The enzymes used and the reaction protocols are briefly outlined, and the mechanistic pathways described.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1003
Author(s):  
Pantharee Kongsat ◽  
Sakprayut Sinthupinyo ◽  
Edgar A. O’Rear ◽  
Thirawudh Pongprayoon

Several types of hematite nanoparticles (α-Fe2O3) have been investigated for their effects on the structure and properties of fly ash (FA) blended cement. All synthesized nanoparticles were found to be of spherical shape, but of different particle sizes ranging from 10 to 195 nm depending on the surfactant used in their preparation. The cement hydration with time showed 1.0% α-Fe2O3 nanoparticles are effective accelerators for FA blended cement. Moreover, adding α-Fe2O3 nanoparticles in FA blended cement enhanced the compressive strength and workability of cement. Nanoparticle size and size distribution were important for optimal filling of various size of pores within the cement structure.


Author(s):  
Deepika Sharma ◽  
Lalita Ledwani ◽  
Tarang Mehrotra ◽  
Naveen Kumar ◽  
Naveed Pervaiz ◽  
...  

1984 ◽  
Vol 223 (1) ◽  
pp. 245-253 ◽  
Author(s):  
M J H Nicklin ◽  
A J Barrett

The interactions between egg-white cystatin and the cysteine proteinases papain, human cathepsin B and bovine dipeptidyl peptidase I were studied. Cystatin was shown to be a competitive reversible inhibitor of cathepsin B (Ki 1.7 nM, k-1 about 2.3×10(-3) s-1). The inhibition of dipeptidyl peptidase I was shown to be reversible (Ki(app.) 0.22 nM, k-1 about 2.2×10(-3) s-1). Cystatin bound papain too tightly for Ki to be determined, but an upper limit of 5 pM was estimated. The association was a second-order process, with k+1 1.0×10(7) M-1×s-1. Papain was shown to form equimolar complexes with cystatin. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of complexes formed between papain or cathepsin B and an excess of cystatin showed no peptide bond cleavage after incubation for 72 h. The reaction of the active-site thiol group of papain with 5,5′-dithiobis-(2-nitrobenzoic acid) at pH 8 and 2,2′-dithiobispyridine at pH 4 was blocked by complex-formation. Dipeptidyl peptidase I and papain were found to compete for binding to cystatin, contrary to a previous report. The two major isoelectric forms of cystatin were found to have similar specific inhibitory activities for papain, and similar affinities for papain, cathepsin B and dipeptidyl peptidase I. This, together with specific oxidation of the N-terminal serine residue with periodate, showed the N-terminal amino group of cystatin 1 to be unimportant for inhibition. General citraconylation of amino groups resulted in a large decrease in the affinity of cystatin for dipeptidyl peptidase I. It is concluded that the interaction of cystatin with cysteine proteinases has many characteristics similar to those of an inhibitor such as aprotinin with serine proteinases.


2013 ◽  
Vol 594-595 ◽  
pp. 73-77 ◽  
Author(s):  
Sze Mei Chin ◽  
Suriati Sufian ◽  
Jeefferie Abd Razak

This paper highlights on the hydrogen production through photocatalytic activity by using hematite nanoparticles synthesized from self-combustion method based on different stirring period. The morphologies and microstructures of the nanostructures were determined using Field-Emission Scanning Electron Microscope (FESEM), X-Ray Diffractometer (XRD) and Particle Size Analyser (PSA). Besides that, surface area analyser was used to determine the BET surface area of the hematite samples. The hematite nanocatalyst as-synthesized are proven to be rhombohedral crystalline hematite (α-Fe2O3) with particle diameters ranging from 60-140 nm. The BET specific surface area of hematite samples increased from 5.437 to 7.6425 m2/g with increasing stirring period from 1 to 4 weeks. This caused the amount of hydrogen gas produced from photocatalytic water splitting to increase as well.


2013 ◽  
Vol 6 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Haibo Guo ◽  
Huifang Xu ◽  
Amanda S. Barnard

Sign in / Sign up

Export Citation Format

Share Document