Sustainable Energy Investment - Technical, Market and Policy Innovations to Address Risk
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 12)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781838801977, 9781838801984

Author(s):  
Joseph Nyangon

The Paris Agreement on climate change requires nations to keep the global temperature within the 2°C carbon budget. Achieving this temperature target means stranding more than 80% of all proven fossil energy reserves as well as resulting in investments in such resources becoming stranded assets. At the implementation level, governments are experiencing technical, economic, and legal challenges in transitioning their economies to meet the 2°C temperature commitment through the nationally determined contributions (NDCs), let alone striving for the 1.5°C carbon budget, which translates into greenhouse gas emissions (GHG) gap. This chapter focuses on tackling the risks of stranded electricity assets using machine learning and artificial intelligence technologies. Stranded assets are not new in the energy sector; the physical impacts of climate change and the transition to a low-carbon economy have generally rendered redundant or obsolete electricity generation and storage assets. Low-carbon electricity systems, which come in variable and controllable forms, are essential to mitigating climate change. These systems present distinct opportunities for machine learning and artificial intelligence-powered techniques. This chapter considers the background to these issues. It discusses the asset stranding discourse and its implications to the energy sector and related infrastructure. The chapter concludes by outlining an interdisciplinary research agenda for mitigating the risks of stranded assets in electricity investments.


Author(s):  
Anneliese Gegenheimer ◽  
Charles Michael Gegenheimer

Greater international collaboration is required to catalyze research and development (R&D) investment flows in energy technologies. Successful deployment of such technologies requires innovative funding mechanisms, intellectual property, and data-driven analyses to make smarter, sustainable investment decisions. As small countries are increasingly dealing with effects of climate change, some are projected to lose large portions of their economy. This chapter discusses ways that smaller countries, both in the developed and developing world, can harness international cooperation to advance energy innovation and mitigate such impact. In contrast to collaboration with larger countries, smaller country collaboration can build more agile, balanced partnerships in which participating countries co-develop and co-own R&D and training, and define pilot programs that target their own needs. Leveraging each other’s strengths, small countries can become catalysts for global change. Smaller country collaboration is explored through a proposed model of collaboration in energy innovation between Singapore and Estonia, often considered gateways to Southeast Asia and the EU plus Russia, respectively. Specifically, Singapore and Estonia have the opportunity to leverage each other’s startup ecosystems, innovation systems, knowledge-based economies, and regional markets to build a niche in clean energy technologies, particularly energy storage innovation, with potential global impact on larger markets.


Author(s):  
Dulce Esmeralda García Ruíz ◽  
Jorge Alberto Navarro Serrano

According to the UN, in the next 20 years, most of the world’s population will live in urban areas. Cities consume a high amount of resources, between this water, for their sustenance, hence the greatest necessity of sustainable development plans. What viable options or strategies can we consider in Latin America such that it can resist the economic, political, and social changes that it is facing? Through prospective studies, in case of Guadalajara, it is possible to determinate how water can generate clean energy, and which are the other strategic areas to empower the city through decarbonization with an interoperative and smart loop system of co-benefits. This study can help in public policy decisions of medium-sized cities in Latin America.


Author(s):  
Cecilia Camporeale ◽  
Roberto Del Ciello ◽  
Mario Jorizzo

The energy sector is vital to efforts to combat climate change as well as achieve economic development. The economy of many Middle East and North African (MENA) countries, such as Algeria, Iran, Qatar, Saudi Arabia, is completely based on hydrocarbons which represent the main source of the state revenue. Investing in renewable energy and efficiency is a winner strategy, allowing both to ensure the necessary availability of energy to cover the country’s domestic energy demand and to make more resources available for export to guarantee the state earnings. Renewable sources can be a solution for a transition to a more sustainable economy and a response to the economic stability of these countries affected by the volatility of oil prices. Such a strategy is reflected in improving the attractiveness of foreign investment in the renewable energy sector. Focusing on Algeria, in this article, we analyze the link between the Algerian economy and energy, underlining the current weakness. This work is partially based on the research financed by the meetMED project (WP 3.1) on barriers for domestic and international investors in the energy sector of Algeria.


Author(s):  
Abd-alla Gad

Remote sensing and thematic data were used to provide comprehensive views of surface conditions related to land degradation and desertification, considered environmental extremes in arid and semi-arid regions. The current work applies techniques, starting with simple visual analyses up to a parametric methodology, adopted from the FAO/UNEP and UNESCO provisional methodology for assessment and mapping of soil degradation. Egyptian case studies are highlighted to insinuate on studied aspects. Variable satellite imageries (MSS, TM, and ETM) and aerial photographs were utilized to provide data on soil conditions, land cover, and land use. IDRISI and ArcGIS software were used to manage thematic data, while ERDAS IMAGIN was used to process satellite data and to derive the normalized difference vegetation index (NDVI) values. A GIS model was established to modify the universal soil loss equation (USLE) calculating the present state and risk of soil degradation. The study area is found exposed to slight hazard of water erosion, however, and to high risk of wind erosion. It is also threatened by a slight to high salinization and slight to moderate physical degradation. It is recommended to use a GIS in detailed and very detailed studies for evaluating soil potentiality in agricultural expansion areas.


Author(s):  
Marco Tortora ◽  
Giuseppe Tortora

Transition to a sustainable economy signed by a circular vision and culture asks firms for huge investments to innovate their own management, strategies, business models, products, and marketing approaches. The Agenda 2030 and the 17 Sustainable Development Goals (SDG) are an important framework for businesses to change their approach and contribute positively to the global movement to fight climate change. The question is what and how micro, small, and medium enterprises (MSMES) can contribute to reduce their impacts while creating more value for them and their stakeholders. This paper aims to answer to this question presenting a case study from Italy where an artisan small firm is innovating to create more positive impacts in circular terms. The focus will be on circular economy and the firms’ material and energy strategies. In doing so, the paper will try to answer the following questions: how easy is for micro and small firms to apply circular economy strategies to contribute to reduce their environmental impacts? Does their strategy coherently compose energy and material flows? The case study will refer to the fashion system in Italy.


Author(s):  
Job Taminiau ◽  
John Byrne ◽  
Daniel Sanchez Carretero ◽  
Soojin Shin ◽  
Jing Xu

Performance gap concerns limit investment in the building energy efficiency retrofit market. In particular, the ability of projects to deliver on promised energy savings is commonly drawn into question. Performance risk mitigation mainly occurs through energy saving performance guarantees. Contractual stipulations arrange the conditions of the guarantee, and ceteris paribus, a higher energy saving guarantee should reduce project performance risk. Therefore, methods that yield a higher energy saving guarantee could help accelerate the market. We review the ability of “smart,” automated, and connected technologies to: (a) intelligently monitor and control the performance of energy-consuming devices to reduce performance variations, (b) provide additional degrees of control over the project’s performance, and, by doing so, (c) motivate the energy services company (ESCO) to raise the energy saving guarantee. Our analysis finds that use of such automated performance control could significantly raise the energy saving guarantee, making projects more likely to succeed.


Author(s):  
Tahira Shafique ◽  
Javeria Shafique

Fossil fuels oil, coal, and gas are valuable resources that are depleting day by day around the world and also imparting a negative impact on the environment. Biofuel because of its dynamic properties; its market values; and being sustainable, renewable, biodegradable, economic, non-pollutant, and abundant is an alternate source of energy. Each country can produce it independently, and because of these valuable properties biofuels have become superior over fossil fuels. This chapter gives a concise preface to biofuels and its impact on the environment. It includes definitions; classifications; impact on environment; implications; types of production techniques like chemical, biochemical, physical, and thermochemical techniques; types of resources like lignocellulosic-biomass, feedstock energy crops, algae, micro-algae, all kinds of solid wastes; and biofuels of prime importance like solid biofuels (biochar, solid biomass), gaseous biofuels (biogas, bio-syngas, and bio-hydrogen), and the most important liquid biofuels (bioethanol, biodiesel, and bio-oil). Due to increasing global warming and climate-changing conditions, in the near future biofuel being an environment-friendly resource of energy will be a substantial part of the world’s energy demand, with no or zero polluting agents.


Author(s):  
Tam Kemabonta

There are over 800 million people in the world without access to modern forms of energy services, like electricity, cooking gas, and LPG. This has been called energy poverty. Most studies in the field of energy poverty address the issue from an absence of technological or financial resources perspective. They address the problem as energy in itself having an objective inherent value, more or less addressing the symptoms of the problem and not the problem itself. In this chapter, a new paradigm that addresses the problem of energy poverty and malinvestment is introduced. This paradigm, utilizing the theory of economic calculation and the use and exchange value embodied in the subjective value theory, makes a case for the importance of private property rights in the factors or means of production for modern forms or energy such as electricity. The Nigerian energy sector is used as a case study for this.


Sign in / Sign up

Export Citation Format

Share Document