scholarly journals Remotely Sensed Data for Assessment of Land Degradation Aspects, Emphases on Egyptian Case Studies

Author(s):  
Abd-alla Gad

Remote sensing and thematic data were used to provide comprehensive views of surface conditions related to land degradation and desertification, considered environmental extremes in arid and semi-arid regions. The current work applies techniques, starting with simple visual analyses up to a parametric methodology, adopted from the FAO/UNEP and UNESCO provisional methodology for assessment and mapping of soil degradation. Egyptian case studies are highlighted to insinuate on studied aspects. Variable satellite imageries (MSS, TM, and ETM) and aerial photographs were utilized to provide data on soil conditions, land cover, and land use. IDRISI and ArcGIS software were used to manage thematic data, while ERDAS IMAGIN was used to process satellite data and to derive the normalized difference vegetation index (NDVI) values. A GIS model was established to modify the universal soil loss equation (USLE) calculating the present state and risk of soil degradation. The study area is found exposed to slight hazard of water erosion, however, and to high risk of wind erosion. It is also threatened by a slight to high salinization and slight to moderate physical degradation. It is recommended to use a GIS in detailed and very detailed studies for evaluating soil potentiality in agricultural expansion areas.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3676 ◽  
Author(s):  
Hao Chen ◽  
Xiangnan Liu ◽  
Chao Ding ◽  
Fang Huang

Land degradation is a widespread environmental issue and an important factor in limiting sustainability. In this study, we aimed to improve the accuracy of monitoring human-induced land degradation by using phenological signal detection and residual trend analysis (RESTREND). We proposed an improved model for assessing land degradation named phenology-based RESTREND (P-RESTREND). This method quantifies the influence of precipitation on normalized difference vegetation index (NDVI) variation by using the bivariate linear regression between NDVI and precipitation in pre-growing season and growing season. The performances of RESTREND and P-RESTREND for discriminating land degradation caused by climate and human activities were compared based on vegetation-precipitation relationship. The test area is in Western Songnen Plain, Northeast China. It is a typical region with a large area of degraded drylands. The MODIS 8-day composite reflectance product and daily precipitation data during 2000–2015 were used. Our results showed that P-RESTREND was more effective in distinguishing different drivers of land degradation than the RESTREND. Degraded areas in the Songnen grasslands can be effectively detected by P-RESTREND. Therefore, this modified model can be regarded as a practical method for assessing human-induced land degradation.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


2021 ◽  
Author(s):  
Maria Castellaneta ◽  
Angelo Rita ◽  
Jesus Julio Camarero ◽  
Michele Colangelo ◽  
Francesco Ripullone

<p>The recent increase in the frequency and severity of heat weaves and droughts has intensified efforts to understand their impact on forest productivity and tree vigor. These climate extreme events are expected to reduce productivity and increase the tree mortality rate, particularly in drought-prone Mediterranean forests. Thus, our goal is to quantify the impacts of hotter droughts on forests vulnerable to drought in the Italian and Iberian peninsulas by using remotely sensed data (NDVI, Normalized Difference Vegetation Index) to track vegetation changes and tree-ring data from forest sites showing dieback to assess tree’s growth trends. The survey involved the comparison of stands showing dieback where trees showed growth decline and high defoliation rates (decay) versus stands where trees showed low or no defoliation. Our outcomes will be discussed i) to describe the effects of climate anomalies on forest vulnerability in terms of resistance and resilience, and ii) to evaluate the existence of a correlation between vegetation response and “post-disturbance” recovery.</p>


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Manuela Signorini ◽  
Anna-Sofie Stensgaard ◽  
Michele Drigo ◽  
Giulia Simonato ◽  
Federica Marcer ◽  
...  

Various ticks exist in the temperate hilly and pre-alpine areas of Northern Italy, where Ixodes ricinus is the more important. In this area different tick-borne pathogen monitoring projects have recently been implemented; we present here the results of a twoyear field survey of ticks and associated pathogens, conducted 2009-2010 in North-eastern Italy. The cost-effectiveness of different sampling strategies, hypothesized a posteriori based on two sub-sets of data, were compared and analysed. The same two subsets were also used to develop models of habitat suitability, using a maximum entropy algorithm based on remotely sensed data. Comparison of the two strategies (in terms of number of ticks collected, rates of pathogen detection and model accuracy) indicated that monitoring at many temporary sites was more cost-effective than monthly samplings at a few permanent sites. The two model predictions were similar and provided a greater understanding of ecological requirements of I. ricinus in the study area. Dense vegetation cover, as measured by the normalized difference vegetation index, was identified as a good predictor of tick presence, whereas high summer temperatures appeared to be a limiting factor. The study suggests that it is possible to obtain realistic results (in terms of pathogens detection and development of habitat suitability maps) with a relatively limited sampling effort and a wellplanned monitoring strategy.


2017 ◽  
Vol 48 (6) ◽  
pp. 1455-1473 ◽  
Author(s):  
Vahid Nourani ◽  
Ahmad Fakheri Fard ◽  
Hoshin V. Gupta ◽  
David C. Goodrich ◽  
Faegheh Niazi

Abstract Classic rainfall–runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, model parameters change temporally. To overcome this problem, normalized difference vegetation index (NDVI) derived from remotely sensed data was used in this study to investigate the effect of land cover variations on hydrological response of watersheds using a conceptual rainfall–runoff model. The study area consists of two sub-watersheds (Hervi and Lighvan) with varied land cover conditions. Obtained results show that the one-parameter model generates runoff forecasts with acceptable level of the considered criteria. Remote sensing data were employed to relate land cover properties of the watershed to the model parameter. While a power form of the regression equation could be best fitted to the parameter values using available images of Hervi sub-watershed, for the Lighvan sub-watershed the fitted equation shows somewhat lower correlation due to higher fluctuations of the model parameter. The average values of the Nash–Sutcliffe efficiency criterion of the model were obtained as 0.87 and 0.55, respectively, for Hervi and Lighvan sub-watersheds. Applying this methodology, the model's parameters might be determined using temporal NDVI values.


2018 ◽  
Vol 10 (12) ◽  
pp. 1953 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Zohra Lili-Chabaane ◽  
...  

This paper presents a technique for the mapping of soil moisture and irrigation, at the scale of agricultural fields, based on the synergistic interpretation of multi-temporal optical and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). The Kairouan plain, a semi-arid region in central Tunisia (North Africa), was selected as a test area for this study. Firstly, an algorithm for the direct inversion of the Water Cloud Model (WCM) was developed for the spatialization of the soil water content between 2015 and 2017. The soil moisture retrieved from these observations was first validated using ground measurements, recorded over 20 reference fields of cereal crops. A second method, based on the use of neural networks, was also used to confirm the initial validation. The results reported here show that the soil moisture products retrieved from remotely sensed data are accurate, with a Root Mean Square Error (RMSE) of less than 5% between the two moisture products. In addition, the analysis of soil moisture and Normalized Difference Vegetation Index (NDVI) products over cultivated fields, as a function of time, led to the classification of irrigated and rainfed areas on the Kairouan plain, and to the production of irrigation maps at the scale of individual fields. This classification is based on a decision tree approach, using a combination of various statistical indices of soil moisture and NDVI time series. The resulting irrigation maps were validated using reference fields within the study site. The best results were obtained with classifications based on soil moisture indices only, with an accuracy of 77%.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


2017 ◽  
Author(s):  
Masoud Masoudi ◽  
Parviz Jokar ◽  
Biswajeet Pradhan

Abstract. Land degradation reduces production of biomass and vegetation cover in every land uses. The lack of specific data related to degradation is a severe limitation for its monitoring. Assessment of current state of land degradation or desertification is very difficult because this phenomena includes several complex processes. For that reason, there is no common agreement has been achieved among the scientific community for its assessment. This study was carried out as an attempt to develop a new approach for land degradation assessment based on its current state by modifying of FAO1/UNEP2 index and normalized difference vegetation index (NDVI) index in Khuzestan province, placed in the southwestern part of Iran. The proposed evaluation method is easy to understand the degree of destruction due to low cost and save time. Results showed that based on percent of hazard classes in current condition of land degradation, the most widespread and minimum area of hazard classes are moderate (38.6 %) and no hazard (0.65 %) classes, respectively. While results in the desert area of study area showed that severe class is much widespread than other hazard classes, showing environmentally bad situation in the study area. Statistical results indicated that degradation is highest in desert and then rangeland compared to dry cultivation and forest. Also statistical test showed average of degradation amount in the arid region is higher than other climates. It is hoped that this attempt using geospatial techniques will be found applicable for other regions of the world and better planning and management of lands, too. 1 Food and Agriculture Organization 2 United Nations Environment Programme


Author(s):  
A. Khaldi ◽  
A. Khaldi ◽  
A. Hamimed

Abstract. The quantification of evapotranspiration from irrigated areas is important for agriculture water management, especially in arid and semi-arid regions where water deficiency is becoming a major constraint in economic welfare and sustainable development. Conventional methods that use point measurements to estimate evapotranspiration are representative only of local areas and cannot be extended to large areas because of landscape heterogeneity. Remote sensing-based energy balance models are presently most suited for estimating evapotranspiration at both field and regional scales. In this study, we aim to develop a methodology based on the triangle concept, allowing estimation of evapotranspiration through the classical equation of Priestley and Taylor (1972) where the proportional coefficient α in this equation is ranged using a linear interpolation between surface temperature and Normalized Difference Vegetation Index (NDVI) values. Preliminary results using remotely sensed data sets from Landsat ETM+ over the Habra Plains in west Algeria are in good agreement with ground measurements. The proposed approach appears to be more reliable and easily applicable for operational estimation of evapotranspiration over large areas.


Sign in / Sign up

Export Citation Format

Share Document