Aluminum Extrusion Technology
Latest Publications


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By ASM International

9781627083362

2000 ◽  
pp. 55-86

Abstract This chapter covers the different types of extrusion presses in use, discussing their relative advantages, operating parameters, and selection factors. It describes the function of major components, including containers, stems, dummy pads, and die carriers, the maintenance they require, and their impact on productivity and the quality of extrusions. It also discusses the integration of auxiliary equipment such as log heaters and shears, quench systems, die ovens, pullers, stretchers, and stackers.


2000 ◽  
pp. 233-244

Abstract This chapter provides an introduction to statistical process control and the concept of total quality management. It begins with a review of quality improvement efforts in the extrusion industry and the considerations involved in developing sampling plans and interpreting control charts. It then lays out the steps that would be followed in order to implement statistical testing for billet casting, die performance, or any other process or variable that impacts extrusion quality. The chapter concludes with an overview of the fundamentals of total quality management.


Abstract This chapter discusses the basic differences between direct and indirect extrusion, the application of plastic theory, the significance of strain and strain rate, friction, and pressure, and factors such as alloy flow stress and extrusion ratio, which influence the quality of material exiting the die and the amount of force required.


2000 ◽  
pp. 245-248

Abstract This chapter provides a summary of ongoing efforts to improve quality and productivity in the aluminum extrusion industry. It assesses advancements in several areas including extrusion presses and auxiliary equipment, tool and die technology, billet casting, extrusion thermodynamics and tribology, and process control.


2000 ◽  
pp. 149-186

Abstract This chapter discusses the extrusion characteristics of relatively soft aluminum alloys. It begins by identifying alloy designations within the class and the types of extrusions made from them. It then explains how extruded shapes and cross-sections are defined and how to analyze and assess important process variables such as runout, extrusion pressure, ram speed, and butt thickness. It also provides best practices for various operations and explains how to identify and remedy common extrusion defects.


2000 ◽  
pp. 187-211

Abstract This chapter discusses the extrusion characteristics of hard aluminum alloys, particularly those in the 5000 and 7000 series. It begins with a review of two studies, one showing how the extrudability of 7xxx alloys varies with the presence and amount of different alloying elements, the other relating minimum wall thickness with circumscribing circle diameter. It then explains how oxides on either the billet or container complicate the control of extrusion as well as auxiliary processes and how material flow and the movement of trapped gasses in different regions of the extrusion can lead to defects and variations in strength. It also discusses the extrusion of aluminum matrix composites and explains how composite billets are made.


2000 ◽  
pp. 29-54

Abstract This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.


2000 ◽  
pp. 119-148

Abstract This chapter describes various aspects of the billet making process and how they affect the quality of aluminum extrusions. It begins with an overview of the direct-chill continuous casting technique and its advantages over other methods, particularly for hard aluminum alloys. It then discusses the influence of casting variables, including pouring temperature and cooling rate, and operating considerations such as the make-up of charge materials, fluxing and degassing procedures, and grain refining. The chapter also provides information on vertical and horizontal casting systems, billet homogenization, and the cause of casting defects, including cracking and splitting, segregation, porosity, and grain growth.


2000 ◽  
pp. 87-118

Abstract This chapter familiarizes readers with the design, configuration, and function of tooling and dies used to extrude aluminum alloys. It discuses basic design considerations, including the geometry, location, and orientation of die openings; allowances for thermal shrinkage, stretching, and deflection; and the length and profile of bearing surfaces. It outlines the steps and processes involved in die making, describes the selection and treatment of die materials, and examines the factors that influence friction and wear. It also discusses the general procedures for on-site die correction.


2000 ◽  
pp. 213-232

Abstract This chapter provides guidelines on how to set up and run an effective quality-improvement program for aluminum extrusion operations. It begins by identifying production processes and variables that impact the quality of hard and soft alloy extrusions. It then presents a series of checklists and flowcharts that can be used to monitor and troubleshoot billet-making and extrusion processes, die construction, equipment maintenance, heat treating, and sawing and stretching procedures. It also discusses the importance of charting test results and monitoring surface treatments that may be required to improve corrosion, oxidation, or wear resistance.


Sign in / Sign up

Export Citation Format

Share Document