scholarly journals Impact of Saturation of Fatty Acids of Phosphatidylcholine and Oil Phase on Properties of β-Lactoglobulin at the Oil/Water Interface

2021 ◽  
Author(s):  
Theresia Heiden-Hecht ◽  
Stephan Drusch

AbstractOil in water emulsions are commonly stabilized by emulsifying constituents like proteins and/or low molecular weight emulsifiers. The emulsifying constituents can compete or coexist at the interface. Interfacial properties thus depend on molecular structure of the emulsifying constituents and the oil phase and the resulting molecular interactions. The present study systematically analyzed the impact of fatty acid saturation of triacylglycerides and phosphatidylcholine on the interfacial properties of a β-lactoglobulin-stabilized interface. The long-term adsorption behaviour and the viscoelasticity of β-lactoglobulin-films were analyzed with or without addition of phosphatidylcholine via drop tensiometry and dilatational rheology. Results from the present study showed that increasing similarity in fatty acid saturation and thus interaction of phosphatidylcholine and oil phase increased the interfacial tension for the phosphatidylcholine alone or in combination with β-lactoglobulin. The characteristics and stability of interfacial films with β-lactoglobulin-phosphatidylcholine are further affected by interfacial adsorption during changes in interfacial area and crystallization events of low molecular weight emulsifiers. This knowledge gives guidance for improving physical stability of protein-based emulsions in foods and related areas. Graphic abstract

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
Spanic ◽  
Horvat ◽  
Drezner ◽  
Zdunic

The grain yield, as well as the quality and safety of the wheat grains and corresponding malt can be compromised by Fusarium spp. infection. The protein content of the grain affects the chemical composition and enzyme levels of the finished malt. The malting industry demands varieties with good malting and brewing performance, as well as good agronomic performance and disease resistance. The best method of disease control is breeding and selection for resistant varieties. Due to higher requirements for malting wheat worldwide, the goal of this investigation was to explore changes in protein distribution in wheat grains and corresponding malt, which are under higher pressure of Fusarium head blight (FHB) infestation in field conditions. The present study provides new knowledge on the impact of the FHB on the distribution of protein components of naturally Fusarium-infected (control) and Fusarium-inoculated wheat varieties in the grain and the corresponding malt in two consecutive years (2015/2016 and 2016/2017). The results showed that Fusarium infection of the susceptible variety Golubica, decreased total glutenins (5.9%), and both high and low molecular weight glutenin subunits (2.5% and 3.5%, respectively) in wheat grains, compared to control, in 2016. In contrast, gliadins and α-gliadins increased significantly (+7.6% and +5.1%, respectively) in the same variety. Wheat grains of the more resistant variety Vulkan showed an increase of the total glutenins content (+4.3%), and of high and of low molecular weight glutenin subunits (+1.2% and +3.2%, respectively) after Fusarium-inoculation, compared to naturally infected grains in 2016. Susceptible variety Golubica increased total glutenins (+9.1%), and both high and low molecular weight glutenin subunits (+3.5% and +5.6%, respectively) after Fusarium-inoculation in wheat malt, compared to naturally infected malt in 2016. In 2017, when disease pressure was higher than in 2016, there was a tendency in all varieties to increase gliadins and its sub fractions after malting, and to decrease glutenins and its sub fractions in Fusarium-inoculated treatment. In conclusion, FHB dramatically depressed grain yield (up to 37%) and quality (glutenins and high molecular weight subunits) in the susceptible Fusarium variety, which makes it inconvenient for malting.


2003 ◽  
Vol 284 (3) ◽  
pp. G423-G433 ◽  
Author(s):  
Daniel Y. Hung ◽  
Frank J. Burczynski ◽  
Ping Chang ◽  
Andrew Lewis ◽  
Paul P. Masci ◽  
...  

Disposition kinetics of [3H]palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [3H]palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [3H]palmitate and metabolites were measured in four experimental groups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [3H]palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [3H]palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [3H]palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98921 ◽  
Author(s):  
Ker Y. Cheah ◽  
Gordon S. Howarth ◽  
Keren A. Bindon ◽  
James A. Kennedy ◽  
Susan E. P. Bastian

2004 ◽  
Vol 22 (13) ◽  
pp. 2532-2539 ◽  
Author(s):  
William L. Dahut ◽  
James L. Gulley ◽  
Philip M. Arlen ◽  
Yinong Liu ◽  
Katherine M. Fedenko ◽  
...  

Purpose Both docetaxel and thalidomide have demonstrated activity in androgen-independent prostate cancer (AIPC). We compared the efficacy of docetaxel to docetaxel plus thalidomide in patients with AIPC. Methods Seventy-five patients with chemotherapy-naïve metastatic AIPC were randomly assigned to receive either docetaxel 30 mg/m2 intravenously every week for 3 consecutive weeks, followed by a 1-week rest period (n = 25); or docetaxel at the same dose and schedule, plus thalidomide 200 mg orally each day (n = 50). Prostate-specific antigen (PSA) consensus criteria and radiographic scans were used to determine the proportion of patients with a PSA decline, and time to progression. Results After a median potential follow-up time of 26.4 months, the proportion of patients with a greater than 50% decline in PSA was higher in the docetaxel/thalidomide group (53% in the combined group, 37% in docetaxel-alone arm). The median progression-free survival in the docetaxel group was 3.7 months and 5.9 months in the combined group (P = .32). At 18 months, overall survival in the docetaxel group was 42.9% and 68.2% in the combined group. Toxicities in both groups were manageable after administration of prophylactic low-molecular-weight heparin in the combination group. Conclusion In this randomized phase II trial, the addition of thalidomide to docetaxel resulted in an encouraging PSA decline rate and overall median survival rate in patients with metastatic AIPC. After the prophylactic low-molecular-weight heparin was instituted to prevent venous thromboses, the combination regimen was well tolerated. Larger randomized trials are warranted to assess the impact of this combination.


2005 ◽  
Vol 288 (1) ◽  
pp. G93-G100 ◽  
Author(s):  
Daniel Y. Hung ◽  
Gerhard A. Siebert ◽  
Ping Chang ◽  
Frank J. Burczynski ◽  
Michael S. Roberts

Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [3H]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17α-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [3H]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.


2019 ◽  
Vol 10 (12) ◽  
pp. 8195-8207
Author(s):  
Natalie Ng ◽  
Peter X. Chen ◽  
Saeed M. Ghazani ◽  
Amanda J. Wright ◽  
Alejandro Marangoni ◽  
...  

Altering sn-fatty acid position of glycerol mono-oleate (GMO) from sn-1 to sn-2 decreases fatty acid bioaccessibility by 25.9% providing possible strategies to tailor lipemic responses of food emulsions.


Sign in / Sign up

Export Citation Format

Share Document