scholarly journals Occupational exposure limits for acetaldehyde, 2‐bromopropane, glyphosate, manganese and inorganic manganese compounds, and zinc oxide nanoparticle, and the biological exposure indices for cadmium and cadmium compounds and ethylbenzene, and carcinogenicity, occupational sensitizer, and reproductive toxicant classifications

2021 ◽  
Vol 63 (1) ◽  
Author(s):  
◽  
Atsuko Araki ◽  
Kenichi Azuma ◽  
Ginji Endo ◽  
Yoko Endo ◽  
...  
2019 ◽  
Vol 14 (1) ◽  
pp. 59-76
Author(s):  
Hailong Hu ◽  
Qian Guo ◽  
Xingpei Fan ◽  
Xiangjuan Wei ◽  
Daqian Yang ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
E. Y. Shaba ◽  
J. O. Jacob ◽  
J. O. Tijani ◽  
M. A. T. Suleiman

AbstractIn this era, nanotechnology is gaining enormous popularity due to its ability to reduce metals, metalloids and metal oxides into their nanosize, which essentially alter their physical, chemical, and optical properties. Zinc oxide nanoparticle is one of the most important semiconductor metal oxides with diverse applications in the field of material science. However, several factors, such as pH of the reaction mixture, calcination temperature, reaction time, stirring speed, nature of capping agents, and concentration of metal precursors, greatly affect the properties of the zinc oxide nanoparticles and their applications. This review focuses on the influence of the synthesis parameters on the morphology, mineralogical phase, textural properties, microstructures, and size of the zinc oxide nanoparticles. In addition, the review also examined the application of zinc oxides as nanoadsorbent for the removal of heavy metals from wastewater.


Author(s):  
Gyudong Lee ◽  
Byongcheun Lee ◽  
Ki-Tae Kim

Environmental transformations modify the physicochemical properties of ZnO NPs, modulate their ability to reduce zinc ions, and determine the degree of toxicity reduction in zebrafish embryos.


Author(s):  
Inese Mārtiņsone ◽  
Mārīte-Ārija Baķe ◽  
Žanna Martinsone ◽  
Maija Eglīte

Possible hazards of work environment in metal processing industry in Latvia The aim of this study was to investigate risk factors in the work environment of Latvian metal processing industry using the database of the Laboratory of Hygiene and Occupational Diseases of the Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University. During the period between 1996 and 2005, 703 measurements were made in metalworking enterprises. In Latvia, approximately 2.4% of the workforce is involved in the metal processing industry. Physical (noise, lighting, vibration) and chemical (abrasive dust, welding aerosol and contained metals) risk factors were analysed. In the assessed metalworking workplaces, the work environment was estimated to be of poor quality, because occupational exposure limits or recommended values were exceeded in 42% (n = 294) of cases. Noise, manganese and welding aerosols most often exceeded the occupational exposure limits or recommended values, the significance was P < 0.001, P < 0.01 and P < 0.05, respectively.


Sign in / Sign up

Export Citation Format

Share Document