scholarly journals Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

2017 ◽  
Vol 53 (11) ◽  
pp. 9757-9770 ◽  
Author(s):  
Tetsu K. Tokunaga ◽  
Weijun Shen ◽  
Jiamin Wan ◽  
Yongman Kim ◽  
Abdullah Cihan ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5278
Author(s):  
Mianmo Meng ◽  
Yinghao Shen ◽  
Hongkui Ge ◽  
Xiaosong Xu ◽  
Yang Wu

Hydraulic fracturing becomes an essential method to develop tight gas. Under high injection pressure, fracturing fluid entering into the formation will reduce the flow channel. To investigate the influence of water saturation on gas flow behavior, this study conducted the gas relative permeability with water saturation and the flow rate with the pressure gradient at different water saturations. As the two dominant tight gas-bearing intervals, the Upper Paleozoic Taiyuan and Shihezi Formations deposited in Ordos Basin were selected because they are the target layers for holding vast tight gas. Median pore radius in the Taiyuan Formation is higher than the one in the Shihezi Formation, while the most probable seepage pore radius in the Taiyuan Formation is lower than the one in the Shihezi Formation. The average irreducible water saturation is 54.4% in the Taiyuan Formation and 61.6% in the Shihezi Formation, which indicates that the Taiyuan Formation has more movable water. The average critical gas saturation is 80.4% and 69.9% in these two formations, respectively, which indicates that the Shihezi Formation has more movable gas. Both critical gas saturation and irreducible water saturation have a negative relationship with porosity as well as permeability. At the same water saturation, the threshold gradient pressure of the Taiyuan Formation is higher than the one in the Shihezi Formation, which means that water saturation has a great influence on the Taiyuan Formation. Overall, compared with the Shihezi Formation, the Taiyuan Formation has a higher median pore size and movable water saturation, but water saturation has more influence on its gas flow capacity. Our research is conducive to understanding the effect of fracturing fluid filtration on the production of natural gas from tight reservoirs.


2013 ◽  
Author(s):  
Jingsheng Ma ◽  
Gary D. Couples ◽  
Zeyun Jiang ◽  
Marinus I.J. van Dijke
Keyword(s):  
Gas Flow ◽  

2012 ◽  
Vol 524-527 ◽  
pp. 1460-1464
Author(s):  
Jian Yan ◽  
Xiao Juan Liu

For the existence of formation water, the capillary force increases when the gas flow in the cores, so the flow may display starting pressure gradient. However, during the lab testing, sometimes it is found that the starting pressure gradient changes in different test conditions: when the outlet pressure is atmosphere, only the water saturation reaches critical value (Sw)c, the quasi starting pressure exists; but when the outlet pressure is not atmosphere; it is easy to find the quasi staring pressure in the same water saturation. And the quasi starting pressure under the later condition is larger than that in former condition. It is also found that the quasi starting pressures are both power function to the ratio of core coefficient and water saturation. The experimental results provide some theoretical references for recognizing the flow characteristics in low permeability gas reservoirs.


2021 ◽  
Vol 11 (1) ◽  
pp. 58-68
Author(s):  
Ferenc Remeczki

The present study represents possibilities of calculating the connate water saturation - CWS - values of samples from unconventional reservoirs and how to evaluate the obtained result. CWS is an extremely important property of the reservoir rocks. It basically determines the value of the resource and can also predict production technology difficulties. For the samples included in the measurement program, significant or extremely high CWS values were determined. Analysis of the corrected pore size distribution proved to be the most appropriate method for interpreting CWS values, although, it also shows some correlation with the most frequent pore radius - MFPR - and porosity.


1968 ◽  
Vol 8 (01) ◽  
pp. 87-94 ◽  
Author(s):  
Lowell R. Smith ◽  
Lyman Yarborough

Abstract This paper presents results of a laboratory study of retrograde condensate recovery by revaporization into dry injection gas. Flow tests were performed in 10.6-ft long sandpacks at 100F and 1,500 psi. In three runs methane revaporized the liquid from a n-heptane-methane mixture in the presence of immobile water. Two of these tests were water-wet, and the third was totally oil-wet. In the three runs n-heptane recovery was complete after 2.5 hydrocarbon PV of injection. There was no significant performance difference between the two wettability extremes. In a fourth experiment, a methane-hydrogen sulfide mixture revaporized a synthetic light, sour condensate. No water saturation was present. Equilibrium compositions and volumetric data were obtained for the four-component condensate. The heavy component, n-heptane, was removed alter 6 PV production. Comparison of the effluent fluid compositions with known equilibrium data shows that the flowing fluid was equilibrium vapor and that the mixing zone between equilibrium vapor and dry injection gas was short. Data indicated that complete recovery of retrograde liquid occurred after it was contacted by a sufficient quantity of dry gas. Introduction When pressure declines below the fluid dew point in a gas condensate reservoir, a liquid phase forms. In this process, referred to as retrograde condensation, the quantity of liquid formed is frequently small enough that the liquid is not a flowing phase. To prevent loss of valuable retrograde liquids, the process of dry gas cycling has been employed for several years as a more or less standard practice. In this procedure the reservoir pressure is maintained above the fluid dew point so that the liquid components may be produced as vapor and then separated at the surface. Although full pressure maintenance by gas cycling seems ideal in terms of preventing liquids loss, several factors can reduce the attractiveness of such an operation. From a study of a condensate reservoir in Alberta, Canada, Havlena et al. concluded that cycling under conditions of declining pressure leads to economic advantages and to a high recovery of hydrocarbon liquids. This study considered effects of volumetric sweep efficiency, retrograde behavior of the original wet gas and revaporization characteristics of the retrograde liquid when contacted by dry gas. The first major work concerning revaporization of liquid in a gas condensate system is that of Standing et al. Calculations based upon the PVT behavior of a recombined gas condensate fluid indicated that all retrograde liquid can be recovered if it is contacted by a sufficient quantity of dry gas. The paper considered the effect of variable permeability upon the recovery of retrograde liquid. Standing et al. concluded that recovery of heavier components in the retrograde liquid is greatest if reservoir pressure is allowed to decline below the dew point prior to dry gas injection. Since the work of Standing et al., several laboratory studies have been reported which show that recovery of hydrocarbon liquids by vaporization into dry injected gas can contribute to increased recovery above that obtained by ordinary production practices. Vaporization from retrograde condensate, conventional oil and volatile oils reservoirs has been considered. There is little work that deals with revaporization recovery from condensate reservoirs. SPEJ P. 87ˆ


2007 ◽  
Vol 10 (04) ◽  
pp. 423-431 ◽  
Author(s):  
Vincent Blanchard ◽  
Didier Lasseux ◽  
Henri Jacques Bertin ◽  
Thierry Rene Pichery ◽  
Guy Andre Chauveteau ◽  
...  

Summary The objective of this paper is to report some experimental investigations on the effect of polymer adsorption on gas/water flow in non-Darcy regimes in homogeneous porous media, in contrast to previously available analyses focused mainly on the Darcy regime. Our investigation concentrates on gas flow either at low mean pressure, when Klinkenberg effects (or gas slippage) must be considered, or at high flow rates, when inertial effects are significant. The experimental study reported here consists of water and nitrogen injections into various silicon carbide model granular packs having different permeabilities. Experiments are carried out at different water saturations before and after polymer adsorption over flow regimes ranging from slip flow to inertial flow. In good agreement with previous works, in the Darcy regime, we observe an increase in irreducible water saturation and a strong reduction in the relative permeability to water, while the relative permeability to gas is slightly affected. At low mean pressure in the gas phase, the magnitude of the Klinkenberg effect is found to increase with water saturation in the absence of polymer, whereas for the same water saturation, the presence of an adsorbed polymer layer reduces this effect. In the inertial regime, a reduction of inertial effects is observed when gas is injected after polymer adsorption, taking into account water-saturation and permeability modifications. Experimental data are discussed according to hypotheses put forth to explain these effects. Consequences for practical use are also put under prospect. Introduction Water/oil or water/gas flows in porous media are strongly modified in the presence of an adsorbed polymer layer on the pore surface. Several studies, performed in the Darcy regime, showed a phenomenon of disproportionate permeability reduction (DPR). The relative permeability to water (krw) is reduced more than the relative permeability to gas (krg) or to oil (kro). Although this effect was observed over most of the water-soluble polymer/weak gel systems and rock materials, the origin of this effect is still controversial in the literature. Several physical processes have been put forth to explain the selective action of the polymer.Mennella et al. (1998) studied water/oil flows in the presence of an adsorbed polymer layer in random packs of monodisperse spheres. They concluded that the DPR was caused by a swelling/shrinking effect depending on the kind of fluid flowing throughout the packs. They also explained the DPR by pore-scale topological modification (pore-size reduction). Similar studies (Dawe and Zhang 1994; Sparlin and Hagen 1984) were carried out on different systems such as micromodels.Some authors (White et al. 1973; Schneider and Owens 1982; Nilsson et al. 1998) have interpreted the effect of polymer by assuming that a porous medium is composed of separate oil/water pore networks. With this representation, the DPR can be explained by the fact that water permeability is affected by the hydrosoluble polymer present in the pore network occupied by water, while oil permeability is not.Many studies attributed the DPR to a wall effect (Zaitoun and Kohler 1988, 2000; Barreau 1996; Zaitoun et al. 1998), which decreases the pore section accessible to water. The physical origin of this mechanism is adsorption—almost irreversible—on the solid surface. An adsorbed polymer layer on pore walls induces steric hindrance, lubrication effects, and wettability modification, all of which are in favor of a stronger reduction of water permeability than of oil permeability. The physical relevance of this mechanism was tested on numerical simulations at the pore scale (Barreau et al. 1997).Liang and Seright (2000), following Nilsson et al. (1998), proposed to complete the explanation of DPR by a "gel-droplet" model. In this scenario, gel droplets formed in pore bodies cause a higher pressure drop at the pore throat in the wetting phase than in the nonwetting one. These reported studies mainly have been dedicated to the polymer action on oil/water systems, and much less attention has been paid to gas/water flow. However, all available results in this last configuration lead to the same behavior, and the same type of physical explanation (wall effect) was proposed (Zaitoun and Kohler 1989; Zaitoun et al. 1991). If published results dealing with the effect of polymer on permeability reduction observed in the Darcy regime are quite numerous, very little work has been dedicated to the non-Darcy regimes. Elmkies et al. (2002) reported laboratory experimental data showing that adsorbed polymer on natural porous-media cores decreases the inertial effects during gas flow. In this paper, we focus our attention on the influence of adsorbed polymer on gas/water core flow in non-Darcy regimes. Gas injection was performed on unconsolidated cores having different permeabilities, at different water saturations, before and after polymer treatment, and at low mean pressure to investigate Klinkenberg effects, as well as at high flow rates, when inertial effects become important.


2003 ◽  
Vol 807 ◽  
Author(s):  
Stephen T. Horseman ◽  
Jon F. Harrington ◽  
P. Sellin

ABSTRACTThis paper describes a long-term laboratory test designed to examine the sensitivity of gas flow in Mx80 buffer bentonite subject to a constant volume boundary condition. A constant volume and radial flow (CVRF) apparatus was designed to enable gas flow from a centrally located injection filter to be independently monitored at three sink-filter arrays mounted around the circumference of the clay specimen. Axial and radial total stresses and internal porewater pressure were continuously monitored. Gas entry, breakthrough and peak gas pressures were found to be systematically higher under constant volume boundary conditions than under previously reported constant stress and radially-constrained test conditions [6, 9, 10]. The observation that gas pressures are sensitive to test boundary conditions supports the hypothesis that gas entry is accompanied by dilation of the bentonite fabric. Gas penetration of the clay caused a substantial increase in total stress and internal porewater pressure. Abrupt drops in gas pressure, accompanied by similar drops in total stress, were interpreted as fracture propagation events. The outflow of gas was always non-uniformly distributed between the sinks. Furthermore, the distribution of flow between sinks often changed abruptly during the course of an experiment indicating that gas pathways were very unstable. When gas injection stopped, the gas pressure and rate of outflow spontaneously declined with time. Under constant volume conditions, the gas pressure at the asymptote exceeded the internal porewater pressure by an amount equal to the capillary pressure. In constant volume tests on clay with high water saturation, capillary pressure has a value close to the measured swelling pressure of the clay.


Sign in / Sign up

Export Citation Format

Share Document