Variable converter Pulse Island test in integrated distributed generation of electrical energy system

Author(s):  
K. Harinadha Reddy
2021 ◽  
Vol 2096 (1) ◽  
pp. 012092
Author(s):  
Yu N Bulatov ◽  
A V Kryukov ◽  
K V Suslov

Abstract The use of distributed generation (DG) plants in electrical energy system (EES) produces unambiguous effect on power quality. The presence of DG plants allows to reduce losses associated with power transmission and maintain the required voltage levels. In this case, the presence of DG can cause voltage fluctuation, leading to the appearance of flicker, which is understood as a feeling of instability of visual perception. Similar processes can occur at sharp disturbances close proximity to the DG. The situation can be aggravated by improperly configured DG generators controllers. Therefore, it is necessary to conduct an accurate assessment of the DG plants impact on the power grid, which is a rather time consuming task. The article presents results of the EES working modes simulation with a DG plant implemented on the basis of synchronous turbine generators. The results obtained indicated that during temporary connection of heavy load in the connection unit of DG plant and the use of non-concordantly tuned controllers, there are fluctuations in rotor speed and voltage of generators, the analysis of which indicates the presence of flicker. The same effect can obtained a sudden change in the forecast time for individual controllers of turbine generators speed. Flicker can be removed by applying group control of generators speed controllers.


2020 ◽  
Vol 14 (1) ◽  
pp. 48-54
Author(s):  
D. Ostrenko ◽  

Emergency modes in electrical networks, arising for various reasons, lead to a break in the transmission of electrical energy on the way from the generating facility to the consumer. In most cases, such time breaks are unacceptable (the degree depends on the class of the consumer). Therefore, an effective solution is to both deal with the consequences, use emergency input of the reserve, and prevent these emergency situations by predicting events in the electric network. After analyzing the source [1], it was concluded that there are several methods for performing the forecast of emergency situations in electric networks. It can be: technical analysis, operational data processing (or online analytical processing), nonlinear regression methods. However, it is neural networks that have received the greatest application for solving these tasks. In this paper, we analyze existing neural networks used to predict processes in electrical systems, analyze the learning algorithm, and propose a new method for using neural networks to predict in electrical networks. Prognostication in electrical engineering plays a key role in shaping the balance of electricity in the grid, influencing the choice of mode parameters and estimated electrical loads. The balance of generation of electricity is the basis of technological stability of the energy system, its violation affects the quality of electricity (there are frequency and voltage jumps in the network), which reduces the efficiency of the equipment. Also, the correct forecast allows to ensure the optimal load distribution between the objects of the grid. According to the experience of [2], different methods are usually used for forecasting electricity consumption and building customer profiles, usually based on the analysis of the time dynamics of electricity consumption and its factors, the identification of statistical relationships between features and the construction of models.


Author(s):  
D. T. Kitamura ◽  
K. P. Rocha ◽  
L. W. Oliveira ◽  
J. G. Oliveira ◽  
B. H. Dias ◽  
...  

MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 40-44 ◽  
Author(s):  
R.B. Schwarz

Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


The operation of high-power industrial electrical installations, particularly in metallurgy and the oil and gas industry, is associated with complex technological processes that require increased attention to the equipment used, as such equipment is used in complex and dangerous production conditions and in continuous operation facilities. High-voltage air and gas compressors are objects with increased electrical energy consumption and have significant starting currents. These circumstances affect both the shape of the supply voltage and the state of the energy system in general. Currently, the development of methods for limiting inrush currents is an urgent task for objects used in industrial enterprises. Introducing a compressor into the technological process is sometimes requires prior coordination of its start with the equipment in operation, especially that with a high power consumption. The paper studies the existing control system as well as ways to upgrade the system to improve its energy performance.


A solar-wind hybrid system plays a key role in power generation and becomes very important role to smart grid power systems. Also, the wind-solar hybrid energy storage control systems in coordination of energy markets, made economical to the electrical power system power system. Hybrid renewable energy system connected micro-grid consists of significant identification; in view of solve the rising electrical energy demand. In addition to this the problem of harmonic distortion in micro-grids due to the non-linear loads is an indispensable topic of study. Also, it is very significant for the better understanding of the power quality impacts in micro-grids. This paper presents detail analysis of different control techniques for optimization of harmonics in smart grid system and enhancement in power quality of the smart grid system. The performance of the control system is verified through the MATLAB simulation of the hybrid solar-wind electrical energy system.


2021 ◽  
pp. 75-86
Author(s):  
A. Gai ◽  
◽  
V. Gulevich ◽  

Today, the electricity supplier is not able to declare the possible level of quality of electricity supply, and the consumer simply does not have the opportunity to buy such "high-quality" electricity. In such conditions, a differentiated approach to tariff formation is inevitable, which has been implemented in practice today, albeit in its infancy. Further improvement of the tariff-forming mechanism is impossible without creating a "flexible" dependence of the tariff on the quality indicators of the consumer's power supply. Quality indicators, in turn, are based, on the one hand, on the methods and approaches for their determination, and on the other, on statistically reliable data on the elements that make up the equipment in the "generation-consumer" chain. In recent years, there has been a tendency to change the concept of development of the electric power industry, since preference is given to the development of sources of distributed generation. Distributed generation is understood as a source of electrical energy directly connected to the distribution electrical network or connected to it by consumers. Ensuring the socio-economic stability of society and a decent quality of life for the population largely depends on the reliability and efficiency of the functioning of the infrastructure for the supply of fuel and energy resources, in particular, electricity. Excessive losses of electricity during its production, transportation and distribution, as well as an unacceptable level of harmful emissions into the atmosphere, are the cause of interruptions in power supply to consumers and even the threat of systemic accidents in the United Energy System (UPS) of the country. The introduction of alternative energy sources in electric power systems, in addition to reducing the harmful impact on the environment and solving the problems associated with waste pollution during electric power generation, will reduce the use of natural resources and relieve the backbone and distribution power lines. As part of the scientific search, an approach was proposed, which is the basis for calculations to determine the optimal installation locations for sources of distributed generation of an average overhead line. The results obtained are presented in the framework of a joint technical meeting of leading specialists of operating enterprises, the customer and the staff of the Department of Power Supply named after V.M. Sinkova NULES of Ukraine.


2021 ◽  
Author(s):  
Juan Arévalo ◽  
Juan Manuel Ortiz ◽  
Eduard Borràs-Camps ◽  
Victor Monsalvo-Garcia ◽  
Maria D. Kennedy ◽  
...  

The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)


Sign in / Sign up

Export Citation Format

Share Document