Novel Coatings of Cemented Carbides by an Improved HVOF Spraying Process

Author(s):  
Makoto Watanabe ◽  
Pornthep Chivavibul ◽  
Jin Kawakita ◽  
Seiji Kuroda
2007 ◽  
Vol 7 (11) ◽  
pp. 3830-3833 ◽  
Author(s):  
Hee-Seon Bang ◽  
Han-Sur Bang ◽  
Yoon-Ki Lee

Photocatalytic TiO2 coatings on bio-degradable plastic(polybutylene succinate: PBS) were prepared by HVOF spraying using three kinds of agglomerated powders (P200: 200 nm, P30: 30 nm, P7: 7 nm). The microstructures of the coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of the coatings was evaluated by photo degradation of gaseous acetaldehyde. For both the HVOF sprayed P200 and P30 coatings, high anatase ratio of 100% was achieved, regardless of the fuel gas pressure. On the other hand, for the HVOF sprayed P7 coating, the anatase ratio decreased from 100% to 49.1% with increasing fuel gas pressure. This decrease may be attributed to the much higher susceptibility to heat of the 7 nm agglomerated powders than the 30 nm and 200 nm agglomerated powders. In terms of the photocatalytic efficiency, HVOF sprayed P200 and P30 coatings seemed to outperform the P7 coatings because of their higher anatase ratios. However, the HVOF sprayed P7 coatings did not show photocatalytic activity possibly because of the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Therefore, the present study found that functional PBS plastic with photocatalytic performance could be produced by spraying of ceramics such as TiO2.


Author(s):  
Y. Shimizu ◽  
K. Sugiura ◽  
K. Sakaki ◽  
A. Devasanapathi

Abstract High Velocity Oxy-Fuel (HVOF) method using propylene as a fuel gas was employed to spray alumina particles. In order to improve the coating characteristics such as the deposition efficiency and the hardness, three HVOF gun nozzles of varying geometry were designed and tested experimentally. The spraying process was also simulated numerically for each of the nozzle geometries to understand their effectiveness in influencing the velocity and temperature of the sprayed particles. The coating was characterized using optical and scanning electron microscopy (SEM), micro-vickers hardness test and X-ray diffractometry (XRD). Results showed that with the use of a convergent and divergent type gun nozzle, similar to that of a Laval nozzle, the extent of melting of the alumina particles could be increased. This was exhibited by an increase in the deposition efficiency to the extent of 45%. However, the sharp changes in the convergent and divergent nozzle geometry, resulted in fusion and agglomeration of alumina particles leading to spitting during the spraying process. The results clearly showed that alumina coatings of excellent hardness in the range of 920-1290 HV, with a relatively dense microstructure could be obtained in HVOF method irrespective of the gun nozzle geometry, provided the spraying parameters are properly controlled.


2019 ◽  
Vol 1153 ◽  
pp. 119-125
Author(s):  
Aurel Valentin Bîrdeanu ◽  
Dubravka S. Milovanovic ◽  
Jovan Ciganovic ◽  
Sanja Petronić ◽  
Mirela Vaida ◽  
...  

The paper presents the characteristics of TiO2 coatings realized by HVOF spraying process by two different processing paths, i.e. using the classical method of preparing the substrate by sandblasting and by applying a fast laser texturing of the substrate (instead of sandblasting) before the actual HVOF spraying respectively (a duplex treatment). The obtained coatings’ morphology were characterized by SEM before and after electrochemical measurements in NaCl solution. The textured sample presented better resistance to corrosion compared with classical processing path. Keywords: coatings, fast laser texturing, HVOF spraying, duplex surface treatment, anticorrosive.


2020 ◽  
pp. 2050052
Author(s):  
G. MOHAMMED THALIB BASHA ◽  
B. VENKATESHWARLU

The influence of reinforcement of carbon nanotubes (CNTs) on microstructural features and mechanical properties of thermally sprayed Al2O3–3[Formula: see text]wt.%TiO2 and WC–20[Formula: see text]wt.%Co coatings was investigated. Alumina–Titania coatings were deposited by Air Plasma Spraying (APS) and Tungsten Carbide–Cobalt coatings were deposited by High-Velocity Oxy-Fuel (HVOF) spraying process. The coatings obtained with reinforcement of CNTs were characterized to interpret the microstructural changes and also to evaluate the variation in their mechanical properties. The percentage composition of CNTs in both APS and HVOF coatings systems were varied in the order of 2, 4, and 6[Formula: see text]wt.%. It has been found that homogenous dispersion of carbon nanotubes in the coating systems results in increased microhardness and reduced surface roughness. Also, the microstructural features of the coating systems clearly showed that the coatings are denser with fewer pores due to the presence of CNTs.


2016 ◽  
Vol 32 (6) ◽  
pp. 2139-2150 ◽  
Author(s):  
Sonja Kuhnt ◽  
André Rehage ◽  
Christina Becker-Emden ◽  
Wolfgang Tillmann ◽  
Birger Hussong

2005 ◽  
Vol 475-479 ◽  
pp. 237-240
Author(s):  
Yasunari Ishikawa ◽  
Jin Kawakita ◽  
Seiji Kuroda

We have developed an improved HVOF spray process called “Gas-shrouded HVOF” (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr3C2-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future.


2014 ◽  
Vol 23 (6) ◽  
pp. 892-902 ◽  
Author(s):  
Q. S. Lin ◽  
K. S. Zhou ◽  
C. M. Deng ◽  
M. Liu ◽  
L. P. Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document