Microbial Disease Biomarkers Using ProteinChip Arrays

Author(s):  
Shea Hamilton ◽  
Michael Levin ◽  
J. Simon Kroll ◽  
Paul R. Langford
Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 164
Author(s):  
Haoyu Liu ◽  
Wei Liu ◽  
Gang Jin

Exosomes are a kind of membrane-bound phospholipid nanovesicle that are secreted extensively in a variety of biological fluids. Accumulating evidence has indicated that exosomes not only communicate with cells, but also perform functional roles in physiology and pathology. In addition, exosomes have also elicited a great deal of excitement due to their potential as disease biomarkers. Therefore, requirements for sensitive methods capable of precisely and specifically determining exosomes were needed. Herein, we not only develop a sensing surface to capture exosomes but also compare two surface proteins on exosomes, which are appropriate for detecting exosome surface markers by total internal reflected imaging ellipsometry (TIRIE). Protein G and antibody were immobilized on a thin layer of golden substrate to form the biosensing surface. The bio-interaction between antibodies and exosomes was recorded by the TIRIE in real time. The distance between exosomes adhered on a surface was 44 nm ± 0.5 nm. The KD  of anti-CD9 and exosome was lower than anti-CD63 and exosome by introducing pseudo-first-order interaction kinetics, which suggested that CD9 is more suitable for exosome surface markers than CD63. The limit of detection (LOD) of TIRIE was 0.4 μg/mL. In conclusion, we have proposed a surface for the detection of exosomes based on TIRIE, which can make the detection of exosomes convenient and efficient.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1223
Author(s):  
Jinhua Dong ◽  
Hiroshi Ueda

The detection of viruses, disease biomarkers, physiologically active substances, drugs, and chemicals is of great significance in many areas of our lives. Immunodetection technology is based on the specificity and affinity of antigen–antibody reactions. Compared with other analytical methods such as liquid chromatography coupled with mass spectrometry, which requires a large and expensive instrument, immunodetection has the advantages of simplicity and good selectivity and is thus widely used in disease diagnosis and food/environmental monitoring. Quenchbody (Q-body), a new type of fluorescent immunosensor, is an antibody fragment labeled with fluorescent dyes. When the Q-body binds to its antigen, the fluorescence intensity increases. The detection of antigens by changes in fluorescence intensity is simple, easy to operate, and highly sensitive. This review comprehensively discusses the principle, construction, application, and current progress related to Q-bodies.


Author(s):  
Tamara G. Fong ◽  
Sarinnapha M. Vasunilashorn ◽  
Yun Gou ◽  
Towia A. Libermann ◽  
Simon Dillon ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rianne E. van Outersterp ◽  
Sam J. Moons ◽  
Udo F. H. Engelke ◽  
Herman Bentlage ◽  
Tessa M. A. Peters ◽  
...  

AbstractThe identification of disease biomarkers plays a crucial role in developing diagnostic strategies for inborn errors of metabolism and understanding their pathophysiology. A primary metabolite that accumulates in the inborn error phenylketonuria is phenylalanine, however its levels do not always directly correlate with clinical outcomes. Here we combine infrared ion spectroscopy and NMR spectroscopy to identify the Phe-glucose Amadori rearrangement product as a biomarker for phenylketonuria. Additionally, we find analogous amino acid-glucose metabolites formed in the body fluids of patients accumulating methionine, lysine, proline and citrulline. Amadori rearrangement products are well-known intermediates in the formation of advanced glycation end-products and have been associated with the pathophysiology of diabetes mellitus and ageing, but are now shown to also form under conditions of aminoacidemia. They represent a general class of metabolites for inborn errors of amino acid metabolism that show potential as biomarkers and may provide further insight in disease pathophysiology.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S91
Author(s):  
Sungmin Kang ◽  
Jeewon Suh ◽  
Jeong Min Pyun ◽  
Young Chul Youn ◽  
Ji Sun Yu ◽  
...  

Author(s):  
Oskar Hansson ◽  
Sandra Rutz ◽  
Henrik Zetterberg ◽  
Ekaterina Bauer ◽  
Teresa Hähl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document