Wear Behavior of Ceramic/Metal Composites

Author(s):  
M. K. Aghajanian ◽  
B. P. Givens ◽  
M. C. Watkins ◽  
A. L. McCormick ◽  
W. M. Waggoner
2006 ◽  
Vol 45 ◽  
pp. 132-141 ◽  
Author(s):  
Irina Hussainova ◽  
Maksim Antonov ◽  
Olga Volobueva

Solid particle erosion tests were conducted on WC-, TiC-, and Cr3C2 - based ceramicmetal composites (cermets) to study their performance in erosive media. The overall objectives of this study are: (i) to improve our current understanding with regards to the influence of intrinsic properties on wear behavior of cermets, (ii) to estimate an influence of metallurgical features during cermets fabrication on resistance to fracture; (iii) to consider micromechanical aspects of cermets durability; and (iiii) to offer the criteria of material reliability in different erosive conditions. For this reasons, microstructure of multiphase materials, fracture mechanisms, ability of energy dissipation and thermo-mechanical parameters and erosion resistance were analyzed.


1975 ◽  
Vol 97 (3) ◽  
pp. 506-509 ◽  
Author(s):  
H. E. Sliney ◽  
J. W. Graham

This paper summarizes the friction and wear behavior of some fluoride-metal, self-lubricating composites. Fluoride-infiltrated sintered nickel alloy composites and plasma-sprayed, co-deposited fluoride-nickel alloy composites are described. The importance of proper surface-conditioning of the composites is stressed. Performance of fluoride-metal composites in some machine application evaluations is discussed.


Author(s):  
M. Kolnes ◽  
J. Kübarsepp ◽  
F. Sergejev ◽  
M. Kolnes ◽  
M. Tarraste ◽  
...  

2021 ◽  
Vol 320 ◽  
pp. 144-149
Author(s):  
Mart Kolnes ◽  
Jakob Kübarsepp ◽  
Fjodor Sergejev ◽  
Märt Kolnes ◽  
Marek Tarraste ◽  
...  

Friction stir welding (FSW) is employed primarily for metals characterized by poor weldability at fusion welding: aluminium, magnesium, titanium and copper alloys as well as stainless steels. The focus of the study was on the feasibility of application of WC-based hardmetal 85WC-Co and TiC-based cermet 80TiC-NiMo as potential tool materials for FSW of copper. The single-pass welding trials of Cu sheets were performed using a vertical milling machine. For better understanding of interactions between the tool and workpiece at welding temperature EDS line scans across the interfaces tool-workpiece after welding as well as after diffusion tests were performed. It was concluded that both tested ceramic-metal composites did not failure during multiple plunges and during the total transverse welding distance of 10 m. Also, significant tool wear was not observed after such a welding distance. The possibility of producing visually defect-free welds using tools from WC- and TiC- based ceramic-metal composites was proved and also mutual diffusion of elements across the interface tool-workpiece was discussed.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Author(s):  
Eric Espíndola ◽  
Mateus José Araújo de Souza ◽  
BEATRIZ SEABRA MELO ◽  
Vinicius Silva dos Reis ◽  
Clóvis Santana ◽  
...  

2015 ◽  
Vol 57 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh

2016 ◽  
Vol 58 (7-8) ◽  
pp. 640-643 ◽  
Author(s):  
Ilyas Istif ◽  
Mehmet Tunc Tuncel

Sign in / Sign up

Export Citation Format

Share Document