Effects of Rare Earth Er2O3on Microstructure and Mechanical Properties of Titanium Foams by Powder Metallurgy

2014 ◽  
pp. 137-144
Author(s):  
Xiao Jian ◽  
Qiu Guibao ◽  
Liao Yilong
2021 ◽  
pp. 100184
Author(s):  
Gyanendra Bhatta ◽  
Luis De Los Santos Valladares ◽  
Xinggang Liu ◽  
Zhaojun Ma ◽  
A. Bustamante Domínguez ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


Author(s):  
Md Mehtab Alam and B.S Motgi

The paper deals with detailed study on microstructure and mechanical properties of aluminum 7068 reinforced with fly ash and silicon carbide by powder metallurgy, aluminum 7068, silicon carbide and fly ash were taken in powder form of required size and mixed together in varying proportion according to specification and compacted with pressure of 400MPa using hydraulic press to make samples and then samples were sintered at 600°c for 2 hours, the samples were tested for density, compressive strength, hardness and microstructure was analyzed using scanning electron microscope, energy dispersive x-ray study was carried out in order to confirm presence of silicon carbide and fly ash in aluminum matrix.


2015 ◽  
Vol 667 ◽  
pp. 303-307
Author(s):  
Hang Song Yang ◽  
Shao Ju Hao ◽  
Jun Jie Liang

For its light quality, good thermal conductivity, and excellent electricity shielding performance, Magnesium alloy has been used in industry, agricultural and so on, for rare earth elements can improve the mechanical performance of magnesium alloy, the study of powder metallurgy is influence by rare earth magnesium is few at present. so, in this paper, by mixing powder metallurgy method the Y89 element was added in Mg17Al12 magnesium alloy, the influence of Y89 on microstructure, hardness and compression performance of Mg17Al12 magnesium alloy was studied, The experimental results show that when amount of Y89’s addition, the mechanical performance is more then and when is 1.22%, its mechanical performance is best, hardness is 66.7 HV, compressive strength is 113.6 MPa,increased respectively by 19.7% and 29.3% compared the Mg17Al12 magnesium alloy substrate, and the grain refinement effect of Mg17Al12 magnesium alloy is the best at this time.


Sign in / Sign up

Export Citation Format

Share Document