Image Tagging with Deep Learning: Fine-Grained Visual Analysis

Author(s):  
Jianlong Fu ◽  
Tao Mei
Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Mao ◽  
Jun Kang Chow ◽  
Pin Siang Tan ◽  
Kuan-fu Liu ◽  
Jimmy Wu ◽  
...  

AbstractAutomatic bird detection in ornithological analyses is limited by the accuracy of existing models, due to the lack of training data and the difficulties in extracting the fine-grained features required to distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in different environments, the model tends to focus on the fine-grained features of birds and achieves higher accuracies. Based on the 100 terabytes of 2-month continuous monitoring data of egrets, our results cover the findings using conventional manual observations, e.g., vertical stratification of egrets according to body size, and also open up opportunities of long-term bird surveys requiring intensive monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, and the relationship of the migration schedules between the great egrets and little egrets.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


Author(s):  
Zhen Li ◽  
Deqing Zou ◽  
Shouhuai Xu ◽  
Zhaoxuan Chen ◽  
Yawei Zhu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 14 (6) ◽  
pp. 863-863
Author(s):  
Supun Nakandala ◽  
Yuhao Zhang ◽  
Arun Kumar

We discovered that there was an inconsistency in the communication cost formulation for the decentralized fine-grained training method in Table 2 of our paper [1]. We used Horovod as the archetype for decentralized fine-grained approaches, and its correct communication cost is higher than what we had reported. So, we amend the communication cost of decentralized fine-grained to [EQUATION]


2021 ◽  
Author(s):  
Zeyuan Zeng ◽  
Yijia Zhang ◽  
Liang Yang ◽  
Hongfei Lin

BACKGROUND Happiness becomes a rising topic that we all care about recently. It can be described in various forms. For the text content, it is an interesting subject that we can do research on happiness by utilizing natural language processing (NLP) methods. OBJECTIVE As an abstract and complicated emotion, there is no common criterion to measure and describe happiness. Therefore, researchers are creating different models to study and measure happiness. METHODS In this paper, we present a deep-learning based model called Senti-BAS (BERT embedded Bi-LSTM with self-Attention mechanism along with the Sentiment computing). RESULTS Given a sentence that describes how a person felt happiness recently, the model can classify the happiness scenario in the sentence with two topics: was it controlled by the author (label ‘agency’), and was it involving other people (label ‘social’). Besides language models, we employ the label information through sentiment computing based on lexicon. CONCLUSIONS The model performs with a high accuracy on both ‘agency’ and ‘social’ labels, and we also make comparisons with several popular embedding models like Elmo, GPT. Depending on our work, we can study the happiness at a more fine-grained level.


2020 ◽  
Vol 34 (07) ◽  
pp. 12047-12054
Author(s):  
Guolei Sun ◽  
Hisham Cholakkal ◽  
Salman Khan ◽  
Fahad Khan ◽  
Ling Shao

The main requisite for fine-grained recognition task is to focus on subtle discriminative details that make the subordinate classes different from each other. We note that existing methods implicitly address this requirement and leave it to a data-driven pipeline to figure out what makes a subordinate class different from the others. This results in two major limitations: First, the network focuses on the most obvious distinctions between classes and overlooks more subtle inter-class variations. Second, the chance of misclassifying a given sample in any of the negative classes is considered equal, while in fact, confusions generally occur among only the most similar classes. Here, we propose to explicitly force the network to find the subtle differences among closely related classes. In this pursuit, we introduce two key novelties that can be easily plugged into existing end-to-end deep learning pipelines. On one hand, we introduce “diversification block” which masks the most salient features for an input to force the network to use more subtle cues for its correct classification. Concurrently, we introduce a “gradient-boosting” loss function that focuses only on the confusing classes for each sample and therefore moves swiftly along the direction on the loss surface that seeks to resolve these ambiguities. The synergy between these two blocks helps the network to learn more effective feature representations. Comprehensive experiments are performed on five challenging datasets. Our approach outperforms existing methods using similar experimental setting on all five datasets.


Sign in / Sign up

Export Citation Format

Share Document