scholarly journals Domain randomization-enhanced deep learning models for bird detection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Mao ◽  
Jun Kang Chow ◽  
Pin Siang Tan ◽  
Kuan-fu Liu ◽  
Jimmy Wu ◽  
...  

AbstractAutomatic bird detection in ornithological analyses is limited by the accuracy of existing models, due to the lack of training data and the difficulties in extracting the fine-grained features required to distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in different environments, the model tends to focus on the fine-grained features of birds and achieves higher accuracies. Based on the 100 terabytes of 2-month continuous monitoring data of egrets, our results cover the findings using conventional manual observations, e.g., vertical stratification of egrets according to body size, and also open up opportunities of long-term bird surveys requiring intensive monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, and the relationship of the migration schedules between the great egrets and little egrets.

Author(s):  
Hanna Pamula ◽  
Agnieszka Pocha ◽  
Maciej Klaczynski

Every year billions of birds migrate between their breeding and wintering areas. As birds are an important indicator in nature conservation, migratory bird studies have been conducted for many decades, mostly by bird-ringing programmes and direct observation. However, most birds migrate at night, and therefore much information about their migration is lost. Novel methods have been developed to overcome this difficulty; including thermal imaging, radar, geolocation techniques, and acoustic recognition of bird calls. Many bird species are detected by their characteristic sounds. This method of identification occurs more often than by direct observation, and therefore recordings are widely used in avian research. The commonly used approach is to record the birds automatically, and to manually study the bird sounds in the recordings afterwards (Furnas and Callas 2015, Frommolt 2017). However, the tagging of recordings is a tedious and time-consuming process that requires expert knowledge, and, as a result, automatic detection of flight calls is in high demand. The first experiments towards this used energy thresholds or template matching (Bardeli et al. 2010, Towsey et al. 2012), and later on the machine and deep learning methods were applied (Stowell et al. 2018). Nevertheless, not many studies have focused specifically on night flight calls (Salamon et al. 2016, Lostanlen et al. 2018). Such acoustic monitoring could complement daytime avian research, especially when the field recording station is close to the bird-ringing station, as it is in our project. In this study, we present the initial results of a long-term bird audio monitoring project using automatic methods for bird detection. Passive acoustic recorders were deployed at a narrow spit between a lake and the Baltic sea in Dąbkowice, West Pomeranian Voivodeship, Poland . We recorded bird calls nightly from sunset till sunrise during the passerine autumn migration for 3 seasons. As a result, we collected over 3000 hours of recordings each season. We annotated a subset of over 50 hours, from different nights with various weather conditions. As avian flight calls are sporadic and short, we created a balanced set for training - recordings were divided into partially overlapping 500-ms clips, and we retained all clips containing calls and created about the same number of clips without bird sounds. Different signal representations were then examined (e.g. mel-spectrograms and multitaper). Afterwards, various convolutional neural networks were checked and their performance was compared using the area under the receiver operating characteristic curve (AUC) measure. Moreover, an initial attempt was made to take advantage of the transfer learning from image classification models. The results obtained by the deep learning methods are promising (AUC exceeding 80%), but higher bird detection accuracy is still needed. For a chosen bird species – Song thrush (Turdus philomelos) – we observed a correlation between calls recorded at night and birds caught in the nets during the day. This fact, as well as the promising results from the detection of calls from long-term recordings, indicate that acoustic monitoring of nocturnal birds has great potential and could be used to supplement the research of the phenomenon of seasonal bird migration.


2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3281
Author(s):  
Xu He ◽  
Yong Yin

Recently, deep learning-based techniques have shown great power in image inpainting especially dealing with squared holes. However, they fail to generate plausible results inside the missing regions for irregular and large holes as there is a lack of understanding between missing regions and existing counterparts. To overcome this limitation, we combine two non-local mechanisms including a contextual attention module (CAM) and an implicit diversified Markov random fields (ID-MRF) loss with a multi-scale architecture which uses several dense fusion blocks (DFB) based on the dense combination of dilated convolution to guide the generative network to restore discontinuous and continuous large masked areas. To prevent color discrepancies and grid-like artifacts, we apply the ID-MRF loss to improve the visual appearance by comparing similarities of long-distance feature patches. To further capture the long-term relationship of different regions in large missing regions, we introduce the CAM. Although CAM has the ability to create plausible results via reconstructing refined features, it depends on initial predicted results. Hence, we employ the DFB to obtain larger and more effective receptive fields, which benefits to predict more precise and fine-grained information for CAM. Extensive experiments on two widely-used datasets demonstrate that our proposed framework significantly outperforms the state-of-the-art approaches both in quantity and quality.


1978 ◽  
Vol 16 (4) ◽  
pp. 549-564 ◽  
Author(s):  
J. W. Garmany

This article discusses some of the issues involved in the choice of technology in developing countries, especially those in Africa, and the relationship of this to employment and output. The problem is to find an optimum combination of productive resources that comes nearest to satisfying two objectives: the full and economically efficient utilisation of such resources, and the creation of as much surplus as possible over current consumption, thereby making possible new investment and long-term growth.


2014 ◽  
Vol 4 (3) ◽  
pp. 368 ◽  
Author(s):  
Roshana Gul

Though a lot of studies have been done to conclude customer loyalty as dependent variable but still there is a vast margin of researches to be conducted in future in different spheres of this construct. On the other hand the truth of the importance of customer loyalty as an enduring asset cannot be falsified. It is fundamental for organizations to build up long term and mutual beneficial associations with the customers. The purpose of this research paper is to show the inter relationship of reputation, customer satisfaction and trust on customer loyalty. According to the observations reputation is the major independent variable that has significant relationship with customer satisfaction, customer loyalty, and trust. Data for this research study was taken from the Islamia University, Quaid-e-Azam Medical College, and different banks located at various geographic locations of Bahawalpur region of Pakistan. Data was collected through self administered questionnaire and analyzed by using regression through SPSS. The results have been drawn from 150 users of NISHAT LINEN and it was found that there is positive and significant relationship among reputation, customer satisfaction, trust and customer loyalty. Hence the studies give the positive sign that with the increment of reputation, customer satisfaction and trust the customer loyalty enhances.  


2009 ◽  
Vol 5 (S267) ◽  
pp. 103-103
Author(s):  
A. H. Andrei ◽  
S. Bouquillon ◽  
J. L. Penna ◽  
F. Taris ◽  
S. Anton ◽  
...  

Quasars are the choicest objects to define a quasi-inertial reference frame. At the same time, they are active galactic nuclei powered by a massive black hole. As the astrometric precision of ground-based optical observations approaches the limit set by the forthcoming GAIA mission, astrometric stability can be investigated. Though the optical emission from the core region usually exceeds the other components by a factor of a hundred, the variability of those components must surely imply some measure of variability of the astrometric baricenter. Whether this is confirmed or not, it puts important constraints on the relationship of the quasar's central engine to the surrounding distribution of matter. To investigate the correlation between long-term optical variability and what is dubbed as the “random walk” of the astrometric center, a program is being pursued at the WFI/ESO 2.2m. The sample was selected from quasars known to undergo large-amplitude and long-term optical variations (Smith et al. 1993; Teerikorpi 2000). The observations are typically made every two months. The treatment is differential, comparing the quasar position and brightness against a sample of selected stars for which the average relative distances and magnitudes remain constant. The provisional results for four objects bring strong support to the hypothesis of a relationship between astrometric and photometric variability. A full account is provided by Andrei et al. (2009).


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2020 ◽  
Vol 9 (1) ◽  
pp. 35-45
Author(s):  
Iwan Sunardi ◽  
Vini Wiratno Putri

The purpose of this study was to examine the effect of the trust of co-workers and proactive personalities on career satisfaction by exchanging leader-members as mediation on employees of bus assembly companies in the city of Semarang. Career satisfaction is the phase in which employees’ long-term career needs are aligned with what they get while working. Employees will always look for opportunities and trust in the organization and people who will help them in achieving career satisfaction. The sampling method uses a purposive sampling technique in the category of staff and foreman employees who have worked for more than five years with a sample of 160 employees. The analytical data in this study uses descriptive statistical test methods, instinctual tests include validity and reliability, and hypothesis testing. The tool used to test in this study uses SmartPLS 3.0. The results of this study, colleague trust cannot directly influence career satisfaction. However, it can be mediated by the exchange of leader members and produce significant influence. For further researchers, they can re-examine the relationship of coworkers’ trust with career satisfaction. And can expand the object of research or respondents under study.


Sign in / Sign up

Export Citation Format

Share Document