Management of Water Resources on the Han River, Korea

2021 ◽  
pp. 533-547
Author(s):  
Hwirin Kim
Keyword(s):  
2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


2021 ◽  
Vol 233 ◽  
pp. 03046
Author(s):  
Ru Qian ◽  
Dong Hao ◽  
Li Zongwu ◽  
Duan Mengge

The Han River valley plays an important strategic role in the water resources allocation system in China. A parallel hybrid approach was used in the study, using both qualitative and quantitative data collection and analysis techniques. Twenty self-administered questionnaires were sent to the heads of the environment bureaus of 17 districts (counties) and 3 cadres of the natural resources bureaus. Three in-depth interviews were conducted with the head of the water authority in the basin. Runoff, water quality and sediment load data were collected over a 17-year period and trends were analyzed using Mann-Kendall and regression analysis statistics to predict future water levels. The results show that the positive linear correlation between runoff R and sediment load is R2 = 0.1718, while the negative linear correlation between sediment load and pH value is R2 = 0.0329. According to the Mann-Kendall analysis(p > 0.05) , no statistically significant trend was found in the data. The study concluded that there was a lack of effective regular interaction and cooperation between water and environmental management at the basin level. Effective Coordination of environmental management remains key to achieving sustainable water resources management in the Han River River Basin.


2020 ◽  
Author(s):  
Cheolhee Jang

<p>The Dynamic Water Resources Asesment Tol (DWAT) acounts for water balance on dynamic (hourly or daily) as wel as static (monthly or yearly) bases. It can be aplied to a smal or a mid-sized basin for water resources planing and management with consideration of surface water as wel as groundwater. The DWAT clasifies a watershed into hydrologicaly homogeneous sub-basins so that runof characteristics resulting from geomorphological factors can be objectively represented, and infiltration, evaporation and groundwater flows can be simulated acording to soil layers. In aditon, as the physical input parameters can be easily extracted by the GIS preprocesing module within the system, it can be aplied to areas in various hydrological, geophysical and climatic conditons, such as tropical, rural, forest or newly developed urban areas. The DWAT has ben developed in Korea Instiute of Civil Enginering and Building Technology (KICT) since 2012 as a part of WMO (World Meteorological Organization) RA (Regional Asociation) II WGHS (Working Group on Hydrological Services) and CHy (Commision for Hydrology) AWG (Advisory Working Group) activites, and it has ben suported by the Han River Flod Control Ofice, Ministry of Environment, Republic of Korea. The first version 1.0 beta of the DWAT was developed in the end of 2017, which contains sub-algorithms such as evapotranspiration, infiltration, watershed runof, groundwater flow, chanel routing and user convenience systems. In the midle of 2018, the second version 1.0 was developed with the aditon of rice pady field, snowmelt and manual/automatic parameter optimization modules. In May 2019, the third version of 1.1 was developed in consideration of the recommendations made by the WMO panel of experts.</p><div> <p><strong>Acknowledgements</strong></p> <p><strong> This research is supported by the Research Program (20200041-001) of Korea Institute of Civil Engineering & Building Technology </strong></p> </div><div> </div>


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 249
Author(s):  
Lele Deng ◽  
Jiabo Yin ◽  
Jing Tian ◽  
Qianxun Li ◽  
Shenglian Guo

As one of the most crucial indices of sustainable development and water security, water resources carrying capacity (WRCC) has been a pivotal and hot-button issue in water resources planning and management. Quantifying WRCC can provide useful references on optimizing water resources allocation and guiding sustainable development. In this study, the WRCCs in both current and future periods were systematically quantified using set pair analysis (SPA), which was formulated to represent carrying grade and explore carrying mechanism. The Soil and Water Assessment Tool (SWAT) model, along with water resources development and utilization model, was employed to project future water resources scenarios. The proposed framework was tested on a case study of China’s Han River basin. A comprehensive evaluation index system across water resources, social economy, and ecological environment was established to assess the WRCC. During the current period, the WRCC first decreased and then increased, and the water resources subsystem performed best, while the eco-environment subsystem achieved inferior WRCC. The SWAT model projected that the amount of the total water resources will reach about 56.9 billion m3 in 2035s, and the water resources development and utilization model projected a rise of water consumption. The declining WRCC implies that the water resources are unable to support or satisfy the demand of ecological and socioeconomic development in 2035s. The study furnishes abundant and valuable information for guiding water resources planning, and the core idea of this model can be extended for the assessment, prediction, and regulation of other systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Lele Deng ◽  
Jiabo Yin ◽  
Zhengke Pan ◽  
...  

AbstractGlobal warming and anthropogenic changes can result in the heterogeneity of water availability in the spatiotemporal scale, which will further affect the allocation of water resources. A lot of researches have been devoted to examining the responses of water availability to global warming while neglected future anthropogenic changes. What’s more, only a few studies have investigated the response of optimal allocation of water resources to the projected climate and anthropogenic changes. In this study, a cascade model chain is developed to evaluate the impacts of projected climate change and human activities on optimal allocation of water resources. Firstly, a large set of global climate models (GCMs) associated with the Daily Bias Correction (DBC) method are employed to project future climate scenarios, while the Cellular Automaton–Markov (CA–Markov) model is used to project future Land Use/Cover Change (LUCC) scenarios. Then the runoff simulation is based on the Soil and Water Assessment Tool (SWAT) hydrological model with necessary inputs under the future conditions. Finally, the optimal water resources allocation model is established based on the evaluation of water supply and water demand. The Han River basin in China was selected as a case study. The results show that: (1) the annual runoff indicates an increasing trend in the future in contrast with the base period, while the ascending rate of the basin under RCP 4.5 is 4.47%; (2) a nonlinear relationship has been identified between the optimal allocation of water resources and water availability, while a linear association exists between the former and water demand; (3) increased water supply are needed in the water donor area, the middle and lower reaches should be supplemented with 4.495 billion m3 water in 2030. This study provides an example of a management template for guiding the allocation of water resources, and improves understandings of the assessments of water availability and demand at a regional or national scale.


2010 ◽  
Vol 43 (3) ◽  
pp. 309-323 ◽  
Author(s):  
Byung-Sik Kim ◽  
Soo-Jun Kim ◽  
Hung-Soo Kim ◽  
Hwan-Don Jun

1990 ◽  
Vol 26 (1) ◽  
pp. 2-4 ◽  
Author(s):  
George H. Davis

Sign in / Sign up

Export Citation Format

Share Document