Nanotechnologies in Sodium-Cooled Fast Spectrum Reactor and Closed Fuel Cycle Sustainable Nuclear Energy System

Author(s):  
Baldev Raj ◽  
U. Kamachi Mudali
2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Richard Stainsby ◽  
Karen Peers ◽  
Colin Mitchell ◽  
Christian Poette ◽  
Konstantin Mikityuk ◽  
...  

Gas-cooled fast reactor (GFR) research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV), that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5) GCFR project in 2000, through FP6 (2005 to 2009) and looking ahead to the proposed activities within the 7th Framework Programme (FP7).


2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.


2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Letícia Caroline Gonçalves ◽  
José Rubens Maiorino

In this work, the use of natural resources was analyzed using a simplified methodology and assuming calculation conditions close to the real ones, to assess the sustainability of the nuclear source and the efficiency in the use of these resources. For the analysis of open fuel cycles, four reactors were selected, these being the Pressurized Water Reactor (PWR) and Pressurized Heavy Water Reactor (PHWR), two Generation II reactors commonly used until today, the advanced Generation III reactor AP1000 and the conceptual reactor AP-Th 1000. For closed fuel cycles, the variation of the utilization of the natural resource alongside with the variation of the conversion factor were evaluated, parameterized by the burnup. It was observed that the Generation II reactors use only 1% of the natural resources and, despite technological advances, the Generation III reactor did not show a significant increase in comparison to the former. Although the closed fuel cycle includes recycling the burnt fuel from thermal reactors, it exploits only about 10% of the resources. Major improvements are observed in Fast Breeder Reactors, being able to obtain a use of almost 100% with the increase of the burning and the minimization of losses. Although the feasibility of using thorium as a nuclear fuel has been proven, it would be better used in a closed cycle, as in the self-sustainable Liquid Fluoride Thorium Reactor (LFTR), a Generation IV reactor that can transform the nuclear energy in a sustainable and renewable source of energy.


2012 ◽  
Vol 4 (10) ◽  
pp. 2377-2398 ◽  
Author(s):  
Stefano Passerini ◽  
Mujid Kazimi

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis), the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU) generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.


2002 ◽  
Vol 40 (3-4) ◽  
pp. 615-620
Author(s):  
Reiko Fujita ◽  
Mitsuaki Yamaoka ◽  
Masatoshi Kawashima ◽  
Masaki Saito ◽  
Haruaki Matsuura ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 299-305
Author(s):  
Anatoly V. Zrodnikov ◽  
Valery V. Korobeynikov ◽  
Andrey L. Moseev ◽  
Aleksandr F. Egorov

Multi-criteria analysis is used in many areas of research where it is required to compare several alternatives according to a selected set of criteria. Of particular interest is the application of this method for a comparative assessment of the efficiency of scenarios for the development of innovative nuclear systems. The article proposes an approach to the computational substantiation of the step-by-step transfer of the Russian nuclear industry to a two-component nuclear energy system (NES) with a centralized closed nuclear fuel cycle (NFC) based on the multi-criteria analysis method. At the same time, consideration is given to options for the development of the domestic nuclear industry in view of the uncertain prospects for the future. Taking into account various trends in the nuclear energy development, the authors identify the following three groups of possible scenarios. The first group includes ‘growing’ scenarios in which the number of units and their total installed capacity grow over time. The second group assumes that after a certain time of growth of the installed capacities, the stationary level will be reached, in which there will be no time-dependent capacity changes. The third group simulates a decrease in the installed nuclear energy capacities in the country after some growth. To select the most preferable ways of technological development and assess the efficiency of a nuclear energy system, a limited set of selection criteria and performance indicators are used, covering the economy, export potential, competitiveness, efficient SNF and RW management, natural uranium consumption, and innovative development potential. An important part of this work was a detailed analysis of the uncertainties in the weights and input data used to derive the criteria.


2019 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov ◽  
Tatyana A. Osipova ◽  
Olga N. Andrianova ◽  
Tatyana V. Utyanskaya

The article presents a description and some illustrative results of the application of two optimization models for a two-component nuclear energy system consisting of thermal and fast reactors in a closed nuclear fuel cycle. These models correspond to two possible options of developing Russian nuclear energy system, which are discussed in the expert community: (1) thermal and fast reactors utilizing uranium and mixed oxide fuel, (2) thermal reactors utilizing uranium oxide fuel and fast reactors utilizing mixed nitride uranium-plutonium fuel. The optimization models elaborated using the IAEA MESSAGE energy planning tool make it possible not only to optimize the nuclear energy system structure according to the economic criterion, taking into account resource and infrastructural constraints, but also to be used as a basis for developing multi-objective, stochastic and robust optimization models of a two-component nuclear energy system. These models were elaborated in full compliance with the recommendations of the IAEA’s PESS and INPRO sections, regarding the specification of nuclear energy systems in MESSAGE. The study is based on publications of experts from NRC “Kurchatov Institute”, JSC “SSC RF-IPPE”, ITCP “Proryv”, JSC “NIKIET”. The presented results demonstrate the characteristic structural features of a two-component nuclear energy system for conservative assumptions in order to illustrate the capabilities of the developed optimization models. Consideration is also given to the economic feasibility of a technologically diversified nuclear energy structure providing the possibility of forming on its base a robust system in the future. It has been demonstrated that given the current uncertainties in the costs of nuclear fuel cycle services and reactor technologies, it is impossible at the moment to make a reasonable conclusion regarding the greatest attractiveness of a particular option in terms of the economic performance.


2004 ◽  
Vol 45 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Yu Jiyang ◽  
Wang Kan ◽  
You Songbo ◽  
Jia Baoshan ◽  
Shen Shifei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document