scholarly journals Tuning of Static and Dynamic Mechanical Response of LPBFed AlSi10Mg Lattice Structures through heat Treatments

Author(s):  
Jacopo Fiocchi ◽  
Chiara Bregoli ◽  
Giulio Gerosa ◽  
Ausonio Tuissi ◽  
Carlo Alberto Biffi
1994 ◽  
Vol 27 (6) ◽  
pp. 826
Author(s):  
C.A. Brown ◽  
H.C. Ward ◽  
C.F. Abrams ◽  
S.C. Roe ◽  
D.J. Deyoung ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 1413-1416 ◽  
Author(s):  
Hong Yan Chen ◽  
Zhen Xing Kong ◽  
Ji Hui Wang

The cure kinetics of Derakane 411-350, a kind of vinyl ester resin, and its suspensions containing multi-walled carbon nanotubes( MWCNTs) were investigated via non-isothermal dynamic scanning calorimetry (DSC) measurements. The results showed that incorporation of MWCNTs into vinyl ester resin excessively reduces polymerization degree and crosslinking density of vinyl ester resin. For suppressing the negative effect caused by nanotubes, the higher temperature initiator combined with the initiator MEKP was used. Dynamic-mechanical Behavior testing was then carried out on the cured sample in order to relate the curing behavior of MWCNTs modified resin suspensions to mechanical response of their resulting nanocomposites. It was revealed that nanocomposites containing MWCNTs possessed larger storage modulus values as well as higher glass transition temperatures (Tg) as compared to those without MWCNTs after using mixed intiators system to improve the degree of cure.


Author(s):  
Anil Saigal ◽  
John R. Tumbleston ◽  
Hendric Vogel

In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the mechanical behavior of octahedral, octet, vertex centroid, dode, diamond, rhombi octahedron, rhombic dodecahedron and solid lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. The compressive stress-strain behavior of the lattice structures observed is typical of cellular structures which include a region of nominally elastic response, yielding, plastic strain hardening to a peak in strength, followed by a drop in flow stress to a plateau region and finally rapid hardening associated with contact of the deformed struts with each other as part of densification. It was found that the elastic modulus and strength of the various lattice structured materials are proportional to each other. In addition, it was found that the octahedral, octet and diamond lattice structures are amongst the most efficient based on the measured specific stiffness and specific strength.


2010 ◽  
Vol 163-167 ◽  
pp. 1645-1650
Author(s):  
Guo Ping Qian ◽  
Shuai Li ◽  
Li Jun Jiang

Under the heavy traffic, the stress state of asphalt pavement structure has such a complex change that it is difficult for conventional pavement structural response calculation model to deal with. Therefore, "Pavement structure dynamic mechanical response model under complex stress condition" is established in this paper. Kinds of cases are calculated according to the characteristics of heavy vehicle. Then the FWD deflection test and dynamic strain test are carried out. Finally, the rationality of pavement structural response model calculation model is proved by comparing the test results with the theoretical model calculation results.


Author(s):  
Marinela Peto ◽  
Oscar Aguilar-Rosas ◽  
Erick Erick Ramirez-Cedillo ◽  
Moises Jimenez ◽  
Adriana Hernandez ◽  
...  

Abstract Lattice structures offer great benefits when employed in medical implants for cell attachment and growth (osseointegration), minimization of stress shielding phenomena, and weight reduction. This study is focused on a proof of concept for developing a generic shoulder hemi-prosthesis, from a patient-specific case of a 46 years old male with a tumor on the upper part of his humerus. A personalized biomodel was designed and a lattice structure was integrated in its middle portion, to lighten weight without affecting humerus’ mechanical response. To select the most appropriate lattice structure, three different configurations were initially tested: Tetrahedral Vertex Centroid (TVC), Hexagonal Prism Vertex Centroid (HPVC), and Cubic Diamond (CD). They were fabricated in resin by digital light processing and its mechanical behavior was studied via compression testing and finite element modeling (FEM). The selected structure according to the results was the HPVC, which was integrated in a digital twin of the biomodel to validate its mechanical performance through FEM but substituting the bone material model with a biocompatible titanium alloy (Ti6Al4V) suitable for prostheses fabrication. Results of the simulation showed acceptable levels of Von Mises stresses (325 MPa max.), below the elastic limit of the titanium alloys, and a better response (52 MPa max.) in a model with equivalent elastic properties, with stress performance in the same order of magnitude than the showed in bone’s material model.


2019 ◽  
Vol 745 ◽  
pp. 279-290 ◽  
Author(s):  
Behnam Shakerifard ◽  
Jesus Galan Lopez ◽  
Mari Carmen Taboada Legaza ◽  
Patricia Verleysen ◽  
Leo A.I. Kestens

2021 ◽  
Author(s):  
Giuseppe Del Guercio ◽  
Manuela Galati ◽  
Abdollah Saboori

Abstract Additive Manufacturing processes are considered advanced manufacturing methods. It would be possible to produce complex shape components from a Computer-Aided Design model in a layer-by-layer manner. Lattice structures as one of the complex geometries could attract lots of attention for both medical and industrial applications. In these structures, besides cell size and cell type, the microstructure of lattice structures can play a key role in these structures' mechanical performance. On the other hand, heat treatment has a significant influence on the mechanical properties of the material. Therefore, in this work, the effect of the heat treatments on the microstructure and mechanical behaviour of Ti-6Al-4V lattice structures manufactured by EBM was analyzed. The main mechanical properties were compared with the Ashby and Gibson model. It is very interesting to notice that a more homogeneous failure mode was found for the heat-treated samples. The structures' relative density was the main factor influencing their mechanical performance of the heat-treated samples. It is also found that the heat treatments were able to preserve the stiffness and the compressive strength of the lattice structures. Besides, an increment of both the elongation at failure and the absorbed energy was obtained after the heat treatments. Microstructure analysis of the heat-treated samples confirms the increment of ductility of the heat-treated samples with respect to the as-built one.


Sign in / Sign up

Export Citation Format

Share Document