WReTaMo Refractory High‐Entropy Alloy with High Strength at 1600 °C

2021 ◽  
pp. 2100765
Author(s):  
Yixing Wan ◽  
Qianqian Wang ◽  
Jinyong Mo ◽  
Zhibin Zhang ◽  
Xin Wang ◽  
...  
2019 ◽  
Vol 177 ◽  
pp. 82-95 ◽  
Author(s):  
Prafull Pandey ◽  
Sanjay Kashyap ◽  
Dhanalakshmi Palanisamy ◽  
Amit Sharma ◽  
Kamanio Chattopadhyay

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1149
Author(s):  
Irina V. Kireeva ◽  
Yuriy I. Chumlyakov ◽  
Zinaida V. Pobedennaya ◽  
Anna V. Vyrodova ◽  
Anastasia A. Saraeva

The main disadvantage of fcc (face-centred cubic lattice) high-entropy alloys is the low stress level at the yield point (σ0.1) at a test temperature above room temperature. This restricts their practical application at high test temperatures from 773 K to 973 K. In this study, we found that a high stress level was reached at the yield point σ0.1 ≈ G/100–G/160 (G is the shear modulus) of the [001]- and [1¯44]-oriented crystals of the Co23.36Cr23.29Fe23.80Ni21.88Al7.67 (Al0.3CoCrFeNi) high-entropy alloy (HEA) within a wide temperature range of 77–973 K under tension, due to the occurrence, of nanotwins, multipoles, dislocations under plastic deformation at 77 K and the subsequent precipitation of ordered L12 and B2 particles. It was shown that grain boundaries are not formed and the samples remain in a single-crystal state after low-temperature deformation and subsequent ageing at 893 K for 50 h. Achieving a high-strength state in the Al0.3CoCrFeNi HEA single crystals induces the orientation dependence of the critical resolved shear stresses (τcr) at T ≥ 200 K (τcr[1¯44] > τcr[001]), which is absent in the initial single-phase crystals, weakens the temperature dependence of σ0.1 above 573 K, and reduces plasticity to 5–13% in the [1¯44] orientation and 15–20% in the [001] orientation.


2020 ◽  
Vol 835 ◽  
pp. 155308 ◽  
Author(s):  
Filip Průša ◽  
Marcello Cabibbo ◽  
Alexandra Šenková ◽  
Vojtěch Kučera ◽  
Zbyněk Veselka ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
S. S. Nene ◽  
M. Frank ◽  
K. Liu ◽  
R. S. Mishra ◽  
B. A. McWilliams ◽  
...  

Author(s):  
Bharat Gwalani ◽  
Tianhao Wang ◽  
Abhinav Jagetia ◽  
Sindhura Gangireddy ◽  
Saideep Muskeri ◽  
...  

Lamellar eutectic structure of Al0.7CoCrFeNi high-entropy alloy (HEA) is emerging as a promising candidate for structural applications because of its high strength-ductility combination. The alloy consists of a fine-scale lamellar fcc+B2 microstructure with high flow stresses >1500 MPa under quasi-static conditions. The response to shear loading was not investigated so far. This is the first report on the shear deformation of an eutectic structured HEA and effect of precipitation on shear deformation. The dynamic shear response (DSR) of the eutectic HEA was examined in two microstructural conditions, with and without the presence of L12 precipitates. A split-Hopkinson pressure bar (SHPB) was used to compress the hat-shaped specimens to study the local DSR of the alloy. The adiabatic shear bands (ASBs) in two different microstructural conditions were characterized after deformation at dynamic strain rates. The adiabatic shear localization occurs at low strains for the high strength material, and the eutectic microstructure does not delay cracking. The width of ASBs and the extent of plastic deformation around them has been correlated with the rate of straining. Dynamic recrystallization within ASBs and profuse twinning around it was observed. Local mechanical response of individual lamellae before and after shear deformation was examined using nano-indentation.


2017 ◽  
Vol 141 ◽  
pp. 59-66 ◽  
Author(s):  
Xuzhou Gao ◽  
Yiping Lu ◽  
Bo Zhang ◽  
Ningning Liang ◽  
Guanzhong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document