Heat accumulation, microstructure evolution and stress distribution of Ti‐Al alloy manufactured by twin ‐ wire plasma arc additive

Author(s):  
Xiaoqi Hou ◽  
Xin Ye ◽  
Xiaoyan Qian ◽  
Xi Zhang ◽  
Peilei Zhang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 474
Author(s):  
Huaqiao Liu ◽  
Yiren Pan ◽  
Huiguang Bian ◽  
Chuansheng Wang

In this study, the two key factors affecting the thermal performance of the insert rubber and stress distribution on the tire sidewall were analyzed extensively through various performance tests and simulations to promote the development of run-flat tires. Four compounds and two structures of insert rubber were designed to investigate the effects of heat accumulation and stress distribution on durability testing at zero pressure. It was concluded that the rigidity and tensile strength of the compound were negatively correlated with temperature. The deformation was a key factor that affects energy loss, which could not be judged solely by the loss factor. The stress distribution, however, should be considered in order to avoid early damage of the tire caused by stress concentration. On the whole, the careful balance of mechanical strength, energy loss, and structural rigidity was the key to the optimal development of run-flat tires. More importantly, the successful implementation of the simulations in the study provided important and useful guidance for run-flat tire development.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.


2011 ◽  
Vol 43 (1) ◽  
pp. 327-339 ◽  
Author(s):  
Yuhong Xiong ◽  
Dongming Liu ◽  
Ying Li ◽  
Baolong Zheng ◽  
Chris Haines ◽  
...  

2015 ◽  
Vol 30 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Santosh Kumar ◽  
Prosenjit Das ◽  
Sandeep K. Tiwari ◽  
Manas K. Mondal ◽  
Supriya Bera ◽  
...  

2008 ◽  
Vol 57 (5) ◽  
pp. 3048
Author(s):  
Wang Kuang-Fei ◽  
Guo Jing-Jie ◽  
Mi Guo-Fa ◽  
Li Bang-Sheng ◽  
Fu Heng-Zhi

2010 ◽  
Vol 146-147 ◽  
pp. 1094-1101
Author(s):  
Fei Ding ◽  
Xiao Feng Wang

A numerical model is developed to describe the kinetics of the microstructure evolution in an atomized droplet of Mg-9wt%Al alloy. The model is coupled with the heat transfer controlling equations to simulate the solidification process of the atomized droplets. The numerical results show that the microstructure development is a result of the common action of the nucleation and growth of grains. The nucleation events take place at a critical supercooling for a given droplet. As the droplet size decreases, the critical supercooling increases significantly. The volume fractions of the phases formed during the period of the recalescence, the segregated solidification and the eutectic reaction are sensitive to the droplet size. It is demonstrated that the developed model describes the microstructure evolution process well.


1987 ◽  
Vol 21 (10) ◽  
pp. 1341-1346 ◽  
Author(s):  
J.J. Valencia ◽  
C. McCullough ◽  
C.G. Levi ◽  
R. Mehrabian

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1234
Author(s):  
Alexander Ulbricht ◽  
Simon J. Altenburg ◽  
Maximilian Sprengel ◽  
Konstantin Sommer ◽  
Gunther Mohr ◽  
...  

Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses.


Sign in / Sign up

Export Citation Format

Share Document