Microstructure Evolution in the Atomized Droplets of Mg-9wt%Al Alloy

2010 ◽  
Vol 146-147 ◽  
pp. 1094-1101
Author(s):  
Fei Ding ◽  
Xiao Feng Wang

A numerical model is developed to describe the kinetics of the microstructure evolution in an atomized droplet of Mg-9wt%Al alloy. The model is coupled with the heat transfer controlling equations to simulate the solidification process of the atomized droplets. The numerical results show that the microstructure development is a result of the common action of the nucleation and growth of grains. The nucleation events take place at a critical supercooling for a given droplet. As the droplet size decreases, the critical supercooling increases significantly. The volume fractions of the phases formed during the period of the recalescence, the segregated solidification and the eutectic reaction are sensitive to the droplet size. It is demonstrated that the developed model describes the microstructure evolution process well.

2011 ◽  
Vol 311-313 ◽  
pp. 600-608
Author(s):  
Zhao Chen ◽  
Xiao Li Wen ◽  
Chang Le Chen

Solidification behaviour of Pb-Bi alloys under rotating magnetic field (RMF) was investigated experimentally to understand the effect of the frequency of RMF on the nucleation and growth behaviour. It was found that, as the increase of the rotating frequency, the grains are fragmented and refined gradually until a transition from columnar to equiaxed microstructures happens at a rotating frequency of 40 Hz. Moreover, the Bi concentration of the primary phase decreases and macrosegregation is eliminated effectively with RMF. These are due to the effect of RMF on the nucleation, growth and fluid flow in the solidification process.


2016 ◽  
Vol 182 ◽  
pp. 125-132 ◽  
Author(s):  
Xingchao Wu ◽  
Yongsheng Li ◽  
Mengqiong Huang ◽  
Wei Liu ◽  
Zhiyuan Hou

2002 ◽  
Vol 753 ◽  
Author(s):  
Williams Lefebvre ◽  
Annick Loiseau ◽  
Alain Menand

ABSTRACTInfluence of oxygen on the microstructure development of a Ti-48 at. % Al alloy has been investigated by means of transmission electron microscopy and 1D atom probe. Oxygen is found to significantly increase the temperature of the α → α2 chemical ordering reaction. As a consequence, above a critical oxygen content, the α → α2 transformation is substituted to the α → γm massive transformation when the Ti-48 Al alloy is quenched from the single a-phase field. In such a case, our pervious work has shown that the alloy exhibits a fully (α2 + γ) ultrafine lamellar structure. The present work gives a complete description of the ultrafine lamellar structure formation which, in opposition to the classical lamellar structure formation, involves an intragranular nucleation and growth of the γ phase within the α2 matrix.


2010 ◽  
Vol 654-656 ◽  
pp. 1536-1539
Author(s):  
Jiu Zhou Zhao ◽  
Hai Li Li ◽  
Qing Liang Wang

A model is developed to analyze the microstructure evolution in a continuously solidified immiscible alloy. The model takes into account the common actions of the nucleation and the diffusional growth/shrinkage of the minority phase droplets, the spatial phase segregation and the convections of the melt. The microstructure formation in a continuously solidified immiscible alloy is calculated. The numerical results demonstrate that the convective flow has great effect on the microstructure evolution. The convective flow against the solidification direction causes an increase in the nucleation rate while the convective flow along the solidification direction causes a decrease in the nucleation rate of the minority phase droplets. The convective flow leads to a more nonuniform distribution of the minority phase droplets in the melt. It causes an increase in the size of the largest minority phase droplet and is against the obtaining of the immiscible alloys with a well dispersed microstructure.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.


Sign in / Sign up

Export Citation Format

Share Document