Elastomeric Thermal Interface Materials with High Through-Plane Thermal Conductivity from Carbon Fiber Fillers Vertically Aligned by Electrostatic Flocking

2014 ◽  
Vol 26 (33) ◽  
pp. 5857-5862 ◽  
Author(s):  
Kojiro Uetani ◽  
Seisuke Ata ◽  
Shigeki Tomonoh ◽  
Takeo Yamada ◽  
Motoo Yumura ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Guangjie Yuan ◽  
Haohao Li ◽  
Bo Shan ◽  
Johan Liu

As the feature size of integrated circuit devices is shrinking to sub-7 nm node, the chip power dissipation significantly increases and mainly converted to the heat. Vertically Aligned Carbon Nanotube arrays (VACNTs) have a large number of outstanding properties, such as high axial thermal conductivity, low expansion coefficient, light-weight, anti-aging, and anti-oxidation. With a dramatic increment of chip temperature, VACNTs and their composites will be the promising materials as Thermal Interface Materials (TIMs), especially due to their high thermal conductivity. In this review, the synthesis, transfer and potential applications of VACNTs have been mentioned. Thermal Chemical Vapor Deposition (TCVD) has been selected for the synthesis of millimeter-scale VACNTs. After that, they are generally transferred to the target substrate for the application of TIMs in the electronics industry, using the solder transfer method. Besides, the preparation and potential applications of VACNTs-based composites are also summarized. The gaps of VACNTs are filled by the metals or polymers to replace the low thermal conductivity in the air and make them free-standing composites films. Compared with VACNTs- metal composites, VACNTs-polymer composites will be more suitable for the next generation TIMs, due to their lightweight, low density and good mechanical properties.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1201 ◽  
Author(s):  
Le Lv ◽  
Wen Dai ◽  
Aijun Li ◽  
Cheng-Te Lin

With the increasing power density of electrical and electronic devices, there has been an urgent demand for the development of thermal interface materials (TIMs) with high through-plane thermal conductivity for handling the issue of thermal management. Graphene exhibited significant potential for the development of TIMs, due to its ultra-high intrinsic thermal conductivity. In this perspective, we introduce three state-of-the-art graphene-based TIMs, including dispersed graphene/polymers, graphene framework/polymers and inorganic graphene-based monoliths. The advantages and limitations of them were discussed from an application point of view. In addition, possible strategies and future research directions in the development of high-performance graphene-based TIMs are also discussed.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 530
Author(s):  
Mazlan Mohamed ◽  
Mohd Nazri Omar ◽  
Mohamad Shaiful Ashrul Ishak ◽  
Rozyanty Rahman ◽  
Zaiazmin Y.N ◽  
...  

Epoxy mixed with others filler for thermal interface material (TIM) had been well conducted and developed. There are problem occurs when previous material were used as matrix material likes epoxy that has non-uniform thickness of thermal interface material produce, time taken for solidification and others. Thermal pad or thermal interface material using graphene as main material to overcome the existing problem and at the same time to increase thermal conductivity and thermal contact resistance. Three types of composite graphene were used for thermal interface material in this research. The sample that contain 10 wt. %, 20 wt. % and 30 wt. % of graphene was used with different contain of graphene oxide (GO).  The thermal conductivity of thermal interface material is both measured and it was found that the increase of amount of graphene used will increase the thermal conductivity of thermal interface material. The highest thermal conductivity is 12.8 W/ (mK) with 30 w. % graphene. The comparison between the present thermal interface material and other thermal interface material show that this present graphene-epoxy is an excellent thermal interface material in increasing thermal conductivity.  


Author(s):  
David Shaddock ◽  
Stanton Weaver ◽  
Ioannis Chasiotis ◽  
Binoy Shah ◽  
Dalong Zhong

The power density requirements continue to increase and the ability of thermal interface materials has not kept pace. Increasing effective thermal conductivity and reducing bondline thickness reduce thermal resistance. High thermal conductivity materials, such as solders, have been used as thermal interface materials. However, there is a limit to minimum bondline thickness in reducing resistance due to increased fatigue stress. A compliant thermal interface material is proposed that allows for thin solder bondlines using a compliant structure within the bondline to achieve thermal resistance <0.01 cm2C/W. The structure uses an array of nanosprings sandwiched between two plates of materials to match thermal expansion of their respective interface materials (ex. silicon and copper). Thin solder bondlines between these mating surfaces and high thermal conductivity of the nanospring layer results in thermal resistance of 0.01 cm2C/W. The compliance of the nanospring layer is two orders of magnitude more compliant than the solder layers so thermal stresses are carried by the nanosprings rather than the solder layers. The fabrication process and performance testing performed on the material is presented.


Sign in / Sign up

Export Citation Format

Share Document