scholarly journals Honeycomb‐structure RuI 3 , a new quantum material related to α ‐RuCl 3

2021 ◽  
pp. 2106831
Author(s):  
Danrui Ni ◽  
Xin Gui ◽  
Kelly M. Powderly ◽  
R. J. Cava
Keyword(s):  
Author(s):  
T. Shimizu ◽  
Y. Muranaka ◽  
I. Ohta ◽  
N. Honda

There have been many reports on ultrastructural alterations in muscles of hypokalemic periodic paralysis (hpp) and hypokalemic myopathy(hm). It is stressed in those reports that tubular structures such as tubular aggregates are usually to be found in hpp as a characteristic feature, but not in hm. We analyzed the histological differences between hpp and hm, comparing their clinical manifestations and morphologic changes in muscles. Materials analyzed were biopsied muscles from 18 patients which showed muscular symptoms due to hypokalemia. The muscle specimens were obtained by means of biopsy from quadriceps muscle and fixed with 2% glutaraldehyde (pH 7.4) and analyzed by ordinary method and modified Golgimethod. The ultrathin section were examined in JEOL 200CX transmission electron microscopy.Electron microscopic examinations disclosed dilated t-system and terminal cistern of sarcoplasmic reticulum (SR)(Fig 1), and an unique structure like “sixad” was occasionally observed in some specimens (Fig 2). Tubular aggregates (Fig 3) and honeycomb structure (Fig 4) were also common characteristic structures in all cases. These ultrastructural changes were common in both the hypokalemic periodic paralysis and the hypokalemic myopathy, regardless of the time of biopsy or the duration of hypokalemia suffered.


2021 ◽  
Vol 160 ◽  
pp. 107365
Author(s):  
Zhejian Li ◽  
Qiusong Yang ◽  
Rui Fang ◽  
Wensu Chen ◽  
Hong Hao
Keyword(s):  

Nano Letters ◽  
2020 ◽  
Author(s):  
Kai Wu ◽  
Jiajia Chen ◽  
Huanhuan Ma ◽  
Lingyun Wan ◽  
Wei Hu ◽  
...  

2021 ◽  
pp. 2100583
Author(s):  
Kunling Peng ◽  
Zizhen Zhou ◽  
Honghui Wang ◽  
Hong Wu ◽  
Jianjun Ying ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1983
Author(s):  
Olimpia Basurto-Vázquez ◽  
Elvia P. Sánchez-Rodríguez ◽  
Graham J. McShane ◽  
Dora I. Medina

Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load–displacement curve and major absorption of energy.


2021 ◽  
pp. 2100183
Author(s):  
Fan Xu ◽  
Siying Zhang ◽  
Guigen Wang ◽  
Daqiang Zhao ◽  
Junwei Feng ◽  
...  

2021 ◽  
Vol 5 (7) ◽  
pp. 181
Author(s):  
Dibyani Sahu ◽  
Harekrushna Sutar ◽  
Pragyan Senapati ◽  
Rabiranjan Murmu ◽  
Debashis Roy

Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. This article centres around the strategies to orchestrate graphene and its applications in an attempt to sum up the advancements that has taken place in the research of graphene.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


Sign in / Sign up

Export Citation Format

Share Document