Functional analysis of the gibbon foot during terrestrial bipedal walking: Plantar pressure distributions and three-dimensional ground reaction forces

2005 ◽  
Vol 128 (3) ◽  
pp. 659-669 ◽  
Author(s):  
Evie Vereecke ◽  
Kristiaan D'Août ◽  
Linda Van Elsacker ◽  
Dirk De Clercq ◽  
Peter Aerts
2021 ◽  
Author(s):  
Russell T. Johnson ◽  
Matthew C. O'Neill ◽  
Brian R. Umberger

Humans walk with an upright posture on extended limbs during stance and with a double-peaked vertical ground reaction force. Our closest living relatives, chimpanzees, are facultative bipeds that walk with a crouched posture on flexed, abducted hind limbs and with a single-peaked vertical ground reaction force. Differences in human and bipedal chimpanzee three-dimensional kinematics have been well quantified; however, it is unclear what the independent effects of using a crouched posture are on three-dimensional gait mechanics for humans, and how they compare with chimpanzees. Understanding the relationships between posture and gait mechanics, with known differences in morphology between species, can help researchers better interpret the effects of trait evolution on bipedal walking. We quantified pelvis and lower limb three-dimensional kinematics and ground reaction forces as humans adopted a series of upright and crouched postures and compared them with data from bipedal chimpanzee walking. Human crouched posture gait mechanics were more similar to bipedal chimpanzee gait than normal human walking, especially in sagittal plane hip and knee angles. However, there were persistent differences between species, as humans walked with less transverse plane pelvis rotation, less hip abduction, and greater peak horizontal ground reaction force in late stance than chimpanzees. Our results suggest that human crouched posture walking reproduces only a small subset of the characteristics of three-dimensional kinematics and ground reaction forces of chimpanzee walking, with the remaining differences likely due in large part to the distinct musculoskeletal morphologies of humans and chimpanzees.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Huiqi Liang ◽  
Wenbo Xie ◽  
Zhiqiang Zhang ◽  
Peizi Wei ◽  
Changhui Cui

The oscillatory behavior of the center of mass (CoM) and the ground reaction forces (GRFs) of walking people can be successfully explained by a 2D spring-loaded inverted pendulum (SLIP) model. However, the application of the 2D model is just restricted to a two-dimensional plane as the model fails to take the GRFs in the lateral direction into consideration. In this article, we simulated the gait cycle with a nonlinear dynamic model—a three-dimensional bipedal walking model—that compensated for defects in the 2D model. An experiment was conducted to compare the simulation results with the experimental data, which revealed that the experimental data of the ground reaction forces were in good agreement with the results of numerical simulation. A correlation analysis was also conducted between several initial dynamic parameters of the model. Through an examination of the impact of 3D dynamic parameters on the peaks of GRFs in three directions, we found that the 3D parameters had a major effect on the lateral GRFs. These findings demonstrate that the characteristics of human walking can be interpreted from a simple spring-damper system.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 436 ◽  
Author(s):  
Hilary Mary Clayton ◽  
Sarah Jane Hobbs

The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum.


2020 ◽  
Vol 110 (4) ◽  
Author(s):  
Jolanta Pauk ◽  
Dagna Swinarska ◽  
Kristina Daunoraviciene

Background Pregnancy is a period when a woman's body undergoes changes. The purpose of this study was to analyze the mechanisms of gait adaptation in overweight pregnant women regarding spatiotemporal gait parameters, ground reaction forces, and plantar pressure distribution. Methods The tests were performed in 29 normal-weight pregnant women and 26 pregnant women who were overweight before pregnancy. The measurements included spatiotemporal gait parameters, in-shoe plantar pressure distribution, and ground reaction forces during gestation. Results The results indicate that both normal-weight and overweight pregnant women make use of the same spatiotemporal gait parameters to increase body stability and safety of movement during pregnancy. The double-step duration in the third trimester of pregnancy was higher in normal-weight and overweight pregnant women compared with in the first trimester (P &lt; .05). A significant change in pressure amplitude was found under all anatomical parts of the foot in the third trimester (P &lt; .05). The results also suggest a higher increase in the maximum amplitude of force in overweight pregnant women in the third trimester compared with the normal-weight group. Conclusions This study suggests that both normal-weight and overweight pregnant women use different mechanisms of gait adaptation during pregnancy. In practice, understanding the biomechanical changes in women's gait can protect the musculoskeletal system during gestation.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Taeyong Sim ◽  
Hyunbin Kwon ◽  
Seung Eel Oh ◽  
Su-Bin Joo ◽  
Ahnryul Choi ◽  
...  

In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a wavelet neural network (WNN) and principal component analysis-mutual information (PCA-MI). For this, the prediction model estimated GRFs and GRMs with three different gait speeds (slow, normal, and fast groups) and healthy/pathological gait patterns (healthy and adolescent idiopathic scoliosis (AIS) groups). Model performance was validated using correlation coefficients (r) and the normalized root mean square error (NRMSE%) and was compared to the prediction accuracy of the previous methods using the same dataset. As a result, the performance of the GRF and GRM prediction model proposed in this study (slow group: r = 0.840–0.989 and NRMSE% = 10.693–15.894%; normal group: r = 0.847–0.988 and NRMSE% = 10.920–19.216%; fast group: r = 0.823–0.953 and NRMSE% = 12.009–20.182%; healthy group: r = 0.836–0.976 and NRMSE% = 12.920–18.088%; and AIS group: r = 0.917–0.993 and NRMSE% = 7.914–15.671%) was better than that of the prediction models suggested in previous studies for every group and component (p < 0.05 or 0.01). The results indicated that the proposed model has improved performance compared to previous prediction models.


Author(s):  
Farnaz Seify ◽  
Elahe Mamashli ◽  
AmirAli Jafarnejadgero ◽  
Mahrokh Dehghani ◽  
Mohsen Katanchi ◽  
...  

Background: Training of elastic walking is a new method for elasticity in gait and correction of the distribution pattern of plantar pressure in patients with low back pain during gait. This study aimed to investigate the distribution pattern of plantar pressure during gait in women with low back pain following 8 weeks-training of elastic walking. Methods: The present study was quasi-experimental. In this research, 20 women with low back pain were divided into control (n=11) and experimental (n=9) groups. Subjects from the experimental group performed elastic gait training for 3 sessions per week for 8 weeks while the control group didn’t have any exercise program. The plantar pressure variables included the peak of vertical ground reaction forces, the time to peak of ground reaction forces, loading rate, the peak of plantar pressure on the ten foot regions, the peak of ground reaction forces on the ten foot regions, and displacement of the pressure center in two internal-external (copx) and anterior-posterior (copy) lines. The distribution pattern of plantar pressure during gait was recorded by a foot scan system (Sampling rate 300 Hz) in pre-training and post-training. Two-way ANOVA was used to analyze the data. The significance level was set at P < 0.05. Results: In the experimental group, the results of this study demonstrated lower peak vertical reaction force (FzMS component) during post-test compared with pre-test (P = 0.002). Moreover, findings showed that the main effect of group on peak pressure in the mid-foot region was significant (P = 0.011). The results showed no significant difference concerning the main effect of group, the main effect of time and effect, interaction time and group on peak vertical reaction force, displacement of pressure center, vertical loading rate, and walking stance time (P > 0.05). Conclusion: The findings of this study showed that training of elastic walking does not have a significant effect on stance time. Also, training of elastic walking in the experimental group reduced the peak vertical ground reaction force (FzMS component) during the post-test compared with the pre-test that can correct the walking pattern and improve the chronic low back pain.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2372
Author(s):  
Paul S. Sung ◽  
Moon Soo Park

Although the asymmetries of scoliotic gait in adolescent idiopathic scoliosis (AIS) groups have been extensively studied, recent studies indicated conflicting results regarding the ground reaction forces (GRFs) during gait in subjects with spinal deformity. The asymmetry during the stance phase might be clarified with three-dimensional (3D) compensations of GRFs between similar characteristics of subjects with and without AIS. The purpose of this study was to compare the normalized 3D GRF differences during the stance phase of gait while considering age, BMI, and Cobb angle between subjects with and without right AIS. There were 23 subjects with right convexity of thoracic idiopathic scoliosis and 22 age- and gender-matched control subjects. All subjects were right upper/lower limb dominant, and the outcome measures included the Cobb angles, normalized GRF, and KAI. The mediolateral (M/L) third peak force on the dominant limb decreased in the AIS group (t = 2.58, p = 0.01). Both groups demonstrated a significant interaction with the 3D indices (F = 5.41, p = 0.02). The post-hoc analysis identified that the M/L plane of asymmetry was significantly different between groups. The Cobb angles were negatively correlated with the vertical asymmetry index (r = −0.45, p = 0.03); however, there was no significant correlation with age (r = −0.10, p = 0.65) or body mass index (r = −0.28, p = 0.20). The AIS group demonstrated decreased GRF in the dominant limb M/L plane of the terminal stance phase. This compensatory motion was confirmed by a significant group difference on the M/L plane of the KAI. This KAI of vertical asymmetry correlated negatively with the Cobb angle. The asymmetric load transmission with compensatory vertical reactions was evident due to abnormal loading in the stance phase. These kinetic compensatory patterns need to be considered with asymmetry on the dominant limb when developing rehabilitation strategies for patients with AIS.


Sign in / Sign up

Export Citation Format

Share Document